|
|
|
/**
|
|
|
|
*
|
|
|
|
*Basic confidence score should be computed and returned for each item in the results.
|
|
|
|
* The score should range between 0-1, and take into consideration as many factors as possible.
|
|
|
|
*
|
|
|
|
* Some factors to consider:
|
|
|
|
*
|
|
|
|
* - number of results from ES
|
|
|
|
* - score of item within the range of highest-lowest scores from ES (within the returned set)
|
|
|
|
* - linguistic match of query
|
|
|
|
* - detection (or specification) of query type. i.e. an address shouldn't match an admin address.
|
|
|
|
*/
|
|
|
|
|
|
|
|
var stats = require('stats-lite');
|
|
|
|
var logger = require('pelias-logger').get('api');
|
|
|
|
|
|
|
|
var RELATIVE_SCORES = true;
|
|
|
|
|
|
|
|
function setup(peliasConfig) {
|
|
|
|
RELATIVE_SCORES = peliasConfig.hasOwnProperty('relativeScores') ? peliasConfig.relativeScores : true;
|
|
|
|
return computeScores;
|
|
|
|
}
|
|
|
|
|
|
|
|
function computeScores(req, res, next) {
|
|
|
|
// do nothing if no result data set
|
|
|
|
if (!req.results || !req.results.data || !req.results.meta) {
|
|
|
|
return next();
|
|
|
|
}
|
|
|
|
|
|
|
|
// compute standard deviation and mean from all scores
|
|
|
|
var scores = req.results.meta.scores;
|
|
|
|
var stdev = computeStandardDeviation(scores);
|
|
|
|
var mean = stats.mean(scores);
|
|
|
|
|
|
|
|
// loop through data items and determine confidence scores
|
|
|
|
req.results.data = req.results.data.map(computeConfidenceScore.bind(null, req, mean, stdev));
|
|
|
|
|
|
|
|
next();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Check all types of things to determine how confident we are that this result
|
|
|
|
* is correct. Score is based on overall score distribution in the result set
|
|
|
|
* as well as how closely the result matches the input parameters.
|
|
|
|
*
|
|
|
|
* @param {object} req
|
|
|
|
* @param {number} mean
|
|
|
|
* @param {number} stdev
|
|
|
|
* @param {object} hit
|
|
|
|
* @returns {object}
|
|
|
|
*/
|
|
|
|
function computeConfidenceScore(req, mean, stdev, hit) {
|
|
|
|
var dealBreakers = checkForDealBreakers(req, hit);
|
|
|
|
if (dealBreakers) {
|
|
|
|
hit.confidence = 0.5;
|
|
|
|
return hit;
|
|
|
|
}
|
|
|
|
|
|
|
|
var checkCount = 3;
|
|
|
|
hit.confidence = 0;
|
|
|
|
|
|
|
|
if (RELATIVE_SCORES) {
|
|
|
|
checkCount += 2;
|
|
|
|
hit.confidence += checkDistanceFromMean(hit._score, mean, stdev);
|
|
|
|
hit.confidence += computeZScore(hit._score, mean, stdev);
|
|
|
|
}
|
|
|
|
hit.confidence += checkName(req.clean.input, req.clean.parsed_input, hit);
|
|
|
|
hit.confidence += checkQueryType(req.clean.parsed_input, hit);
|
|
|
|
hit.confidence += checkAddress(req.clean.parsed_input, hit);
|
|
|
|
|
|
|
|
// TODO: look at categories and location
|
|
|
|
|
|
|
|
hit.confidence /= checkCount;
|
|
|
|
|
|
|
|
logger.debug('[confidence]:', hit.confidence, hit.name.default);
|
|
|
|
|
|
|
|
return hit;
|
|
|
|
}
|
|
|
|
|
|
|
|
function checkForDealBreakers(req, hit) {
|
|
|
|
if (!req.clean.parsed_input) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.clean.parsed_input.state && req.clean.parsed_input.state !== hit.admin1_abbr) {
|
|
|
|
logger.debug('[confidence][deal-breaker]: state !== admin1_abbr');
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req.clean.parsed_input.postalcode && req.clean.parsed_input.postalcode !== hit.zip) {
|
|
|
|
logger.debug('[confidence][deal-breaker]: postalcode !== zip');
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Check how statistically significant the score of this result is
|
|
|
|
* given mean and standard deviation
|
|
|
|
*
|
|
|
|
* @param {number} score
|
|
|
|
* @param {number} mean
|
|
|
|
* @param {number} stdev
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function checkDistanceFromMean(score, mean, stdev) {
|
|
|
|
return (score - mean) > stdev ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compare input string or name component of parsed_input against
|
|
|
|
* default name in result
|
|
|
|
*
|
|
|
|
* @param {string} input
|
|
|
|
* @param {object|undefined} parsed_input
|
|
|
|
* @param {object} hit
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function checkName(input, parsed_input, hit) {
|
|
|
|
// parsed_input name should take precedence if available since it's the cleaner name property
|
|
|
|
if (parsed_input && parsed_input.name && hit.name.default.toLowerCase() === parsed_input.name.toLowerCase()) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if no parsed_input check the input value as provided against result's default name
|
|
|
|
if (hit.name.default.toLowerCase() === input.toLowerCase()) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if no matches detected, don't judge too harshly since it was a longshot anyway
|
|
|
|
return 0.7;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Input being set indicates the query was for an address
|
|
|
|
* check if house number was specified and found in result
|
|
|
|
*
|
|
|
|
* @param {object|undefined} input
|
|
|
|
* @param {object} hit
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function checkQueryType(input, hit) {
|
|
|
|
if (!!input.number && (!hit.address || (hit.address && !hit.address.number))) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determine the quality of the property match
|
|
|
|
*
|
|
|
|
* @param {string|number|undefined|null} inputProp
|
|
|
|
* @param {string|number|undefined|null} hitProp
|
|
|
|
* @param {boolean} expectEnriched
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function propMatch(inputProp, hitProp, expectEnriched) {
|
|
|
|
|
|
|
|
// both missing, but expect to have enriched value in result => BAD
|
|
|
|
if (!inputProp && !hitProp && expectEnriched) { return 0; }
|
|
|
|
|
|
|
|
// both missing, and no enrichment expected => GOOD
|
|
|
|
if (!inputProp && !hitProp) { return 1; }
|
|
|
|
|
|
|
|
// input has it, result doesn't => BAD
|
|
|
|
if (inputProp && !hitProp) { return 0; }
|
|
|
|
|
|
|
|
// input missing, result has it, and enrichment is expected => GOOD
|
|
|
|
if (!inputProp && hitProp && expectEnriched) { return 1; }
|
|
|
|
|
|
|
|
// input missing, result has it, enrichment not desired => 50/50
|
|
|
|
if (!inputProp && hitProp) { return 0.5; }
|
|
|
|
|
|
|
|
// both present, values match => GREAT
|
|
|
|
if (inputProp && hitProp && inputProp.toString().toLowerCase() === hitProp.toString().toLowerCase()) { return 1; }
|
|
|
|
|
|
|
|
// ¯\_(ツ)_/¯
|
|
|
|
return 0.7;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Check various parts of the parsed input address
|
|
|
|
* against the results
|
|
|
|
*
|
|
|
|
* @param {object} input
|
|
|
|
* @param {string|number} [input.number]
|
|
|
|
* @param {string} [input.street]
|
|
|
|
* @param {string} [input.postalcode]
|
|
|
|
* @param {string} [input.state]
|
|
|
|
* @param {string} [input.country]
|
|
|
|
* @param {object} hit
|
|
|
|
* @param {object} [hit.address]
|
|
|
|
* @param {string|number} [hit.address.number]
|
|
|
|
* @param {string} [hit.address.street]
|
|
|
|
* @param {string|number} [hit.zip]
|
|
|
|
* @param {string} [hit.admin1_abbr]
|
|
|
|
* @param {string} [hit.alpha3]
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function checkAddress(input, hit) {
|
|
|
|
var checkCount = 5;
|
|
|
|
var res = 0;
|
|
|
|
|
|
|
|
if (input && input.number && input.street) {
|
|
|
|
res += propMatch(input.number, (hit.address ? hit.address.number : null), false);
|
|
|
|
res += propMatch(input.street, (hit.address ? hit.address.street : null), false);
|
|
|
|
res += propMatch(input.postalcode, (hit.address ? hit.address.zip: null), true);
|
|
|
|
res += propMatch(input.state, hit.admin1_abbr, true);
|
|
|
|
res += propMatch(input.country, hit.alpha3, true);
|
|
|
|
|
|
|
|
res /= checkCount;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
res = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* z-scores have an effective range of -3.00 to +3.00.
|
|
|
|
* An average z-score is ZERO.
|
|
|
|
* A negative z-score indicates that the item/element is below
|
|
|
|
* average and a positive z-score means that the item/element
|
|
|
|
* in above average. When teachers say they are going to "curve"
|
|
|
|
* the test, they do this by computing z-scores for the students' test scores.
|
|
|
|
*
|
|
|
|
* @param {number} score
|
|
|
|
* @param {number} mean
|
|
|
|
* @param {number} stdev
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function computeZScore(score, mean, stdev) {
|
|
|
|
if (stdev < 0.01) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// because the effective range of z-scores is -3.00 to +3.00
|
|
|
|
// add 10 to ensure a positive value, and then divide by 10+3+3
|
|
|
|
// to further normalize to %-like result
|
|
|
|
return (((score - mean) / (stdev)) + 10) / 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes standard deviation given an array of values
|
|
|
|
*
|
|
|
|
* @param {Array} scores
|
|
|
|
* @returns {number}
|
|
|
|
*/
|
|
|
|
function computeStandardDeviation(scores) {
|
|
|
|
var stdev = stats.stdev(scores);
|
|
|
|
// if stdev is low, just consider it 0
|
|
|
|
return (stdev < 0.01) ? 0 : stdev;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
module.exports = setup;
|