|
|
|
const peliasQuery = require('pelias-query');
|
|
|
|
const defaults = require('./search_defaults');
|
|
|
|
const logger = require('pelias-logger').get('api');
|
|
|
|
const _ = require('lodash');
|
|
|
|
const check = require('check-types');
|
|
|
|
|
|
|
|
//------------------------------
|
|
|
|
// general-purpose search query
|
|
|
|
//------------------------------
|
|
|
|
const addressUsingIdsQuery = new peliasQuery.layout.AddressesUsingIdsQuery();
|
|
|
|
|
|
|
|
// scoring boost
|
|
|
|
addressUsingIdsQuery.score( peliasQuery.view.focus_only_function( peliasQuery.view.phrase ) );
|
|
|
|
// --------------------------------
|
|
|
|
|
|
|
|
// non-scoring hard filters
|
|
|
|
addressUsingIdsQuery.filter( peliasQuery.view.boundary_country );
|
|
|
|
addressUsingIdsQuery.filter( peliasQuery.view.boundary_circle );
|
|
|
|
addressUsingIdsQuery.filter( peliasQuery.view.boundary_rect );
|
|
|
|
addressUsingIdsQuery.filter( peliasQuery.view.sources );
|
|
|
|
// --------------------------------
|
|
|
|
|
|
|
|
// This query is a departure from traditional Pelias queries where textual
|
|
|
|
// names of admin areas were looked up. This query uses the ids returned by
|
|
|
|
// placeholder for lookups which dramatically reduces the amount of information
|
|
|
|
// that ES has to store and allows us to have placeholder handle altnames on
|
|
|
|
// behalf of Pelias.
|
|
|
|
//
|
|
|
|
// For the happy path, an input like '30 West 26th Street, Manhattan' would result
|
|
|
|
// in:
|
|
|
|
// neighbourhood_id in []
|
|
|
|
// borough_id in [421205771]
|
|
|
|
// locality_id in [85945171, 85940551, 85972655]
|
|
|
|
// localadmin_id in [404502889, 404499147, 404502891, 85972655]
|
|
|
|
//
|
|
|
|
// Where the ids are for all the various Manhattans. Each of those could
|
|
|
|
// conceivably be the Manhattan that the user was referring to so so all must be
|
|
|
|
// queried for at the same time.
|
|
|
|
//
|
|
|
|
// A counter example for this is '1 West Market Street, York, PA' where York, PA
|
|
|
|
// can be interpreted as a locality OR county. From experience, when there's
|
|
|
|
// ambiguity between locality and county for an input, the user is, with complete
|
|
|
|
// metaphysical certitude, referring to the city. If they were referring to the
|
|
|
|
// county, they would have entered 'York County, PA'. The point is that it's
|
|
|
|
// insufficient to just query for all ids because, in this case, '1 West Market Street'
|
|
|
|
// in other cities in York County, PA would be returned and would be both jarring
|
|
|
|
// to the user and almost certainly leads to incorrect results. For example,
|
|
|
|
// the following could be returned (all are towns in York County, PA):
|
|
|
|
// - 1 West Market Street, Dallastown, PA
|
|
|
|
// - 1 West Market Street, Fawn Grove, PA
|
|
|
|
// - 1 West Market Street, Shrewsbury, PA
|
|
|
|
// etc.
|
|
|
|
//
|
|
|
|
// To avoid this calamitous response, this query takes the approach of
|
|
|
|
// "granularity bands". That is, if there are any ids in the first set of any
|
|
|
|
// of these granularities:
|
|
|
|
// - neighbourhood
|
|
|
|
// - borough
|
|
|
|
// - locality
|
|
|
|
// - localadmin
|
|
|
|
// - region
|
|
|
|
// - macroregion
|
|
|
|
// - dependency
|
|
|
|
// - country
|
|
|
|
//
|
|
|
|
// then query for all ids in only those layers. Falling back, if there are
|
|
|
|
// no ids in those layers, query for the county/macrocounty layers.
|
|
|
|
//
|
|
|
|
// This methodology ensures that no happened-to-match-on-county results are returned.
|
|
|
|
//
|
|
|
|
// The decision was made to include all other layers in one to solve the issue
|
|
|
|
// where a country and city share a name, such as Mexico, which could be
|
|
|
|
// interpreted as a country AND city (in Missouri). The data itself will sort
|
|
|
|
// out which is correct. That is, it's unlikely that "11 Rock Springs Dr" exists
|
|
|
|
// in Mexico the country due to naming conventions and would be filtered out
|
|
|
|
// (though it could, but that's good because it's legitimate)
|
|
|
|
|
|
|
|
const granularity_bands = [
|
|
|
|
['neighbourhood', 'borough', 'locality', 'localadmin', 'region', 'macroregion', 'dependency', 'country'],
|
|
|
|
['county', 'macrocounty']
|
|
|
|
];
|
|
|
|
|
|
|
|
// returns IFF there are *any* results in the granularity band
|
|
|
|
function anyResultsAtGranularityBand(results, band) {
|
|
|
|
return results.some(result => _.includes(band, result.layer));
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns the ids of results at the requested layer
|
|
|
|
function getIdsAtLayer(results, layer) {
|
|
|
|
return results.filter(result => result.layer === layer).map(_.property('source_id'));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
map request variables to query variables for all inputs
|
|
|
|
provided by this HTTP request. This function operates on res.data which is the
|
|
|
|
Document-ified placeholder repsonse.
|
|
|
|
**/
|
|
|
|
function generateQuery( clean, res ){
|
|
|
|
const vs = new peliasQuery.Vars( defaults );
|
|
|
|
const results = _.defaultTo(res.data, []);
|
|
|
|
|
|
|
|
// sources
|
|
|
|
if( !_.isEmpty(clean.sources) ) {
|
|
|
|
vs.var( 'sources', clean.sources);
|
|
|
|
}
|
|
|
|
|
|
|
|
// size
|
|
|
|
if( clean.querySize ) {
|
|
|
|
vs.var( 'size', clean.querySize );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ! _.isEmpty(clean.parsed_text.number) ){
|
|
|
|
vs.var( 'input:housenumber', clean.parsed_text.number );
|
|
|
|
}
|
|
|
|
vs.var( 'input:street', clean.parsed_text.street );
|
|
|
|
|
|
|
|
// find the first granularity band for which there are results
|
|
|
|
const granularity_band = granularity_bands.find(band => anyResultsAtGranularityBand(results, band));
|
|
|
|
|
|
|
|
// if there's a granularity band, accumulate the ids from each layer in the band
|
|
|
|
// into an object mapping layer->ids of those layers
|
|
|
|
if (granularity_band) {
|
|
|
|
const layers_to_ids = granularity_band.reduce((acc, layer) => {
|
|
|
|
acc[layer] = getIdsAtLayer(res.data, layer);
|
|
|
|
return acc;
|
|
|
|
}, {});
|
|
|
|
|
|
|
|
// use an object here instead of calling `set` since that flattens out an
|
|
|
|
// object into key/value pairs and makes identifying layers harder in query module
|
|
|
|
vs.var('input:layers', layers_to_ids);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// focus point
|
|
|
|
if( check.number(clean['focus.point.lat']) &&
|
|
|
|
check.number(clean['focus.point.lon']) ){
|
|
|
|
vs.set({
|
|
|
|
'focus:point:lat': clean['focus.point.lat'],
|
|
|
|
'focus:point:lon': clean['focus.point.lon']
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
// boundary rect
|
|
|
|
if( check.number(clean['boundary.rect.min_lat']) &&
|
|
|
|
check.number(clean['boundary.rect.max_lat']) &&
|
|
|
|
check.number(clean['boundary.rect.min_lon']) &&
|
|
|
|
check.number(clean['boundary.rect.max_lon']) ){
|
|
|
|
vs.set({
|
|
|
|
'boundary:rect:top': clean['boundary.rect.max_lat'],
|
|
|
|
'boundary:rect:right': clean['boundary.rect.max_lon'],
|
|
|
|
'boundary:rect:bottom': clean['boundary.rect.min_lat'],
|
|
|
|
'boundary:rect:left': clean['boundary.rect.min_lon']
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
// boundary circle
|
|
|
|
if( check.number(clean['boundary.circle.lat']) &&
|
|
|
|
check.number(clean['boundary.circle.lon']) ){
|
|
|
|
vs.set({
|
|
|
|
'boundary:circle:lat': clean['boundary.circle.lat'],
|
|
|
|
'boundary:circle:lon': clean['boundary.circle.lon']
|
|
|
|
});
|
|
|
|
|
|
|
|
if( check.number(clean['boundary.circle.radius']) ){
|
|
|
|
vs.set({
|
|
|
|
'boundary:circle:radius': Math.round( clean['boundary.circle.radius'] ) + 'km'
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// boundary country
|
|
|
|
if( check.string(clean['boundary.country']) ){
|
|
|
|
vs.set({
|
|
|
|
'boundary:country': clean['boundary.country']
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
return {
|
|
|
|
type: 'address_search_using_ids',
|
|
|
|
body: addressUsingIdsQuery.render(vs)
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
module.exports = generateQuery;
|