/** * *Basic confidence score should be computed and returned for each item in the results. * The score should range between 0-1, and take into consideration as many factors as possible. * * Some factors to consider: * * - number of results from ES * - score of item within the range of highest-lowest scores from ES (within the returned set) * - linguistic match of query * - detection (or specification) of query type. i.e. an address shouldn't match an admin address. */ var stats = require('stats-lite'); var logger = require('pelias-logger').get('api'); var check = require('check-types'); var RELATIVE_SCORES = true; function setup(peliasConfig) { if (check.assigned(peliasConfig)) { RELATIVE_SCORES = peliasConfig.hasOwnProperty('relativeScores') ? peliasConfig.relativeScores : true; } return computeScores; } function computeScores(req, res, next) { // do nothing if no result data set if (check.undefined(req.clean) || check.undefined(res) || check.undefined(res.data) || check.undefined(res.meta)) { return next(); } // compute standard deviation and mean from all scores var scores = res.meta.scores; var stdev = computeStandardDeviation(scores); var mean = stats.mean(scores); // loop through data items and determine confidence scores res.data = res.data.map(computeConfidenceScore.bind(null, req, mean, stdev)); next(); } /** * Check all types of things to determine how confident we are that this result * is correct. Score is based on overall score distribution in the result set * as well as how closely the result matches the text parameters. * * @param {object} req * @param {number} mean * @param {number} stdev * @param {object} hit * @returns {object} */ function computeConfidenceScore(req, mean, stdev, hit) { var dealBreakers = checkForDealBreakers(req, hit); if (dealBreakers) { hit.confidence = 0.5; return hit; } var checkCount = 3; hit.confidence = 0; if (RELATIVE_SCORES) { checkCount += 2; hit.confidence += checkDistanceFromMean(hit._score, mean, stdev); hit.confidence += computeZScore(hit._score, mean, stdev); } hit.confidence += checkName(req.clean.text, req.clean.parsed_text, hit); hit.confidence += checkQueryType(req.clean.parsed_text, hit); hit.confidence += checkAddress(req.clean.parsed_text, hit); // TODO: look at categories and location hit.confidence /= checkCount; hit.confidence = Number((hit.confidence).toFixed(3)); logger.debug('[confidence]:', hit.confidence, hit.name.default); return hit; } /* * Check for clearly mismatching properties in a result * zip code and state (region) are currently checked if present * * @param {object|undefined} text * @param {object} hit * @returns {bool} */ function checkForDealBreakers(req, hit) { if (check.undefined(req.clean.parsed_text)) { return false; } if (check.assigned(req.clean.parsed_text.state) && req.clean.parsed_text.state !== hit.parent.region_a[0]) { logger.debug('[confidence][deal-breaker]: state !== region_a'); return true; } if (check.assigned(req.clean.parsed_text.postalcode) && check.assigned(hit.address) && req.clean.parsed_text.postalcode !== hit.address.zip) { logger.debug('[confidence][deal-breaker]: postalcode !== zip (' + req.clean.parsed_text.postalcode + ' !== ' + hit.address.zip + ')'); return true; } } /** * Check how statistically significant the score of this result is * given mean and standard deviation * * @param {number} score * @param {number} mean * @param {number} stdev * @returns {number} */ function checkDistanceFromMean(score, mean, stdev) { return (score - mean) > stdev ? 1 : 0; } /** * Compare text string or name component of parsed_text against * default name in result * * @param {string} text * @param {object|undefined} parsed_text * @param {object} hit * @returns {number} */ function checkName(text, parsed_text, hit) { // parsed_text name should take precedence if available since it's the cleaner name property if (check.assigned(parsed_text) && check.assigned(parsed_text.name) && hit.name.default.toLowerCase() === parsed_text.name.toLowerCase()) { return 1; } // if no parsed_text check the text value as provided against result's default name if (hit.name.default.toLowerCase() === text.toLowerCase()) { return 1; } // if no matches detected, don't judge too harshly since it was a longshot anyway return 0.7; } /** * text being set indicates the query was for an address * check if house number was specified and found in result * * @param {object|undefined} text * @param {object} hit * @returns {number} */ function checkQueryType(text, hit) { if (check.assigned(text) && check.assigned(text.number) && (check.undefined(hit.address) || (check.assigned(hit.address) && check.undefined(hit.address.number)))) { return 0; } return 1; } /** * Determine the quality of the property match * * @param {string|number|undefined|null} textProp * @param {string|number|undefined|null} hitProp * @param {boolean} expectEnriched * @returns {number} */ function propMatch(textProp, hitProp, expectEnriched) { // both missing, but expect to have enriched value in result => BAD if (check.undefined(textProp) && check.undefined(hitProp) && check.assigned(expectEnriched)) { return 0; } // both missing, and no enrichment expected => GOOD if (check.undefined(textProp) && check.undefined(hitProp)) { return 1; } // text has it, result doesn't => BAD if (check.assigned(textProp) && check.undefined(hitProp)) { return 0; } // text missing, result has it, and enrichment is expected => GOOD if (check.undefined(textProp) && check.assigned(hitProp) && check.assigned(expectEnriched)) { return 1; } // text missing, result has it, enrichment not desired => 50/50 if (check.undefined(textProp) && check.assigned(hitProp)) { return 0.5; } // both present, values match => GREAT if (check.assigned(textProp) && check.assigned(hitProp) && textProp.toString().toLowerCase() === hitProp.toString().toLowerCase()) { return 1; } // ¯\_(ツ)_/¯ return 0.7; } /** * Check various parts of the parsed text address * against the results * * @param {object} text * @param {string|number} [text.number] * @param {string} [text.street] * @param {string} [text.postalcode] * @param {string} [text.state] * @param {string} [text.country] * @param {object} hit * @param {object} [hit.address] * @param {string|number} [hit.address.number] * @param {string} [hit.address.street] * @param {string|number} [hit.address.zip] * @param {Array} [hit.parent.region_a] * @param {Array} [hit.parent.country_a] * @returns {number} */ function checkAddress(text, hit) { var checkCount = 5; var res = 0; if (check.assigned(text) && check.assigned(text.number) && check.assigned(text.street)) { res += propMatch(text.number, (hit.address ? hit.address.number : null), false); res += propMatch(text.street, (hit.address ? hit.address.street : null), false); res += propMatch(text.postalcode, (hit.address ? hit.address.zip: null), true); res += propMatch(text.state, hit.parent.region_a[0], true); res += propMatch(text.country, hit.parent.country_a[0], true); res /= checkCount; } else { res = 1; } return res; } /** * z-scores have an effective range of -3.00 to +3.00. * An average z-score is ZERO. * A negative z-score indicates that the item/element is below * average and a positive z-score means that the item/element * in above average. When teachers say they are going to "curve" * the test, they do this by computing z-scores for the students' test scores. * * @param {number} score * @param {number} mean * @param {number} stdev * @returns {number} */ function computeZScore(score, mean, stdev) { if (stdev < 0.01) { return 0; } // because the effective range of z-scores is -3.00 to +3.00 // add 10 to ensure a positive value, and then divide by 10+3+3 // to further normalize to %-like result return (((score - mean) / (stdev)) + 10) / 16; } /** * Computes standard deviation given an array of values * * @param {Array} scores * @returns {number} */ function computeStandardDeviation(scores) { var stdev = stats.stdev(scores); // if stdev is low, just consider it 0 return (stdev < 0.01) ? 0 : stdev; } module.exports = setup;