mirror of https://github.com/pelias/api.git
264 lines
7.9 KiB
264 lines
7.9 KiB
/** |
|
* |
|
*Basic confidence score should be computed and returned for each item in the results. |
|
* The score should range between 0-1, and take into consideration as many factors as possible. |
|
* |
|
* Some factors to consider: |
|
* |
|
* - number of results from ES |
|
* - score of item within the range of highest-lowest scores from ES (within the returned set) |
|
* - linguistic match of query |
|
* - detection (or specification) of query type. i.e. an address shouldn't match an admin address. |
|
*/ |
|
|
|
var stats = require('stats-lite'); |
|
var logger = require('pelias-logger').get('api'); |
|
var check = require('check-types'); |
|
|
|
var RELATIVE_SCORES = true; |
|
|
|
function setup(peliasConfig) { |
|
if (check.assigned(peliasConfig)) { |
|
RELATIVE_SCORES = peliasConfig.hasOwnProperty('relativeScores') ? peliasConfig.relativeScores : true; |
|
} |
|
return computeScores; |
|
} |
|
|
|
function computeScores(req, res, next) { |
|
// do nothing if no result data set |
|
if (check.undefined(req.clean) || check.undefined(res) || |
|
check.undefined(res.data) || check.undefined(res.meta)) { |
|
return next(); |
|
} |
|
|
|
// compute standard deviation and mean from all scores |
|
var scores = res.meta.scores; |
|
var stdev = computeStandardDeviation(scores); |
|
var mean = stats.mean(scores); |
|
|
|
// loop through data items and determine confidence scores |
|
res.data = res.data.map(computeConfidenceScore.bind(null, req, mean, stdev)); |
|
|
|
next(); |
|
} |
|
|
|
/** |
|
* Check all types of things to determine how confident we are that this result |
|
* is correct. Score is based on overall score distribution in the result set |
|
* as well as how closely the result matches the text parameters. |
|
* |
|
* @param {object} req |
|
* @param {number} mean |
|
* @param {number} stdev |
|
* @param {object} hit |
|
* @returns {object} |
|
*/ |
|
function computeConfidenceScore(req, mean, stdev, hit) { |
|
var dealBreakers = checkForDealBreakers(req, hit); |
|
if (dealBreakers) { |
|
hit.confidence = 0.5; |
|
return hit; |
|
} |
|
|
|
var checkCount = 3; |
|
hit.confidence = 0; |
|
|
|
if (RELATIVE_SCORES) { |
|
checkCount += 2; |
|
hit.confidence += checkDistanceFromMean(hit._score, mean, stdev); |
|
hit.confidence += computeZScore(hit._score, mean, stdev); |
|
} |
|
hit.confidence += checkName(req.clean.text, req.clean.parsed_text, hit); |
|
hit.confidence += checkQueryType(req.clean.parsed_text, hit); |
|
hit.confidence += checkAddress(req.clean.parsed_text, hit); |
|
|
|
// TODO: look at categories and location |
|
|
|
hit.confidence /= checkCount; |
|
hit.confidence = Number((hit.confidence).toFixed(3)); |
|
|
|
logger.debug('[confidence]:', hit.confidence, hit.name.default); |
|
|
|
return hit; |
|
} |
|
|
|
function checkForDealBreakers(req, hit) { |
|
if (check.undefined(req.clean.parsed_text)) { |
|
return false; |
|
} |
|
|
|
if (check.assigned(req.clean.parsed_text.state) && req.clean.parsed_text.state !== hit.admin1_abbr) { |
|
logger.debug('[confidence][deal-breaker]: state !== admin1_abbr'); |
|
return true; |
|
} |
|
|
|
if (check.assigned(req.clean.parsed_text.postalcode) && req.clean.parsed_text.postalcode !== hit.zip) { |
|
logger.debug('[confidence][deal-breaker]: postalcode !== zip'); |
|
return true; |
|
} |
|
} |
|
|
|
/** |
|
* Check how statistically significant the score of this result is |
|
* given mean and standard deviation |
|
* |
|
* @param {number} score |
|
* @param {number} mean |
|
* @param {number} stdev |
|
* @returns {number} |
|
*/ |
|
function checkDistanceFromMean(score, mean, stdev) { |
|
return (score - mean) > stdev ? 1 : 0; |
|
} |
|
|
|
/** |
|
* Compare text string or name component of parsed_text against |
|
* default name in result |
|
* |
|
* @param {string} text |
|
* @param {object|undefined} parsed_text |
|
* @param {object} hit |
|
* @returns {number} |
|
*/ |
|
function checkName(text, parsed_text, hit) { |
|
// parsed_text name should take precedence if available since it's the cleaner name property |
|
if (check.assigned(parsed_text) && check.assigned(parsed_text.name) && |
|
hit.name.default.toLowerCase() === parsed_text.name.toLowerCase()) { |
|
return 1; |
|
} |
|
|
|
// if no parsed_text check the text value as provided against result's default name |
|
if (hit.name.default.toLowerCase() === text.toLowerCase()) { |
|
return 1; |
|
} |
|
|
|
// if no matches detected, don't judge too harshly since it was a longshot anyway |
|
return 0.7; |
|
} |
|
|
|
/** |
|
* text being set indicates the query was for an address |
|
* check if house number was specified and found in result |
|
* |
|
* @param {object|undefined} text |
|
* @param {object} hit |
|
* @returns {number} |
|
*/ |
|
function checkQueryType(text, hit) { |
|
if (check.assigned(text) && check.assigned(text.number) && |
|
(check.undefined(hit.address) || |
|
(check.assigned(hit.address) && check.undefined(hit.address.number)))) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
/** |
|
* Determine the quality of the property match |
|
* |
|
* @param {string|number|undefined|null} textProp |
|
* @param {string|number|undefined|null} hitProp |
|
* @param {boolean} expectEnriched |
|
* @returns {number} |
|
*/ |
|
function propMatch(textProp, hitProp, expectEnriched) { |
|
|
|
// both missing, but expect to have enriched value in result => BAD |
|
if (check.undefined(textProp) && check.undefined(hitProp) && check.assigned(expectEnriched)) { return 0; } |
|
|
|
// both missing, and no enrichment expected => GOOD |
|
if (check.undefined(textProp) && check.undefined(hitProp)) { return 1; } |
|
|
|
// text has it, result doesn't => BAD |
|
if (check.assigned(textProp) && check.undefined(hitProp)) { return 0; } |
|
|
|
// text missing, result has it, and enrichment is expected => GOOD |
|
if (check.undefined(textProp) && check.assigned(hitProp) && check.assigned(expectEnriched)) { return 1; } |
|
|
|
// text missing, result has it, enrichment not desired => 50/50 |
|
if (check.undefined(textProp) && check.assigned(hitProp)) { return 0.5; } |
|
|
|
// both present, values match => GREAT |
|
if (check.assigned(textProp) && check.assigned(hitProp) && |
|
textProp.toString().toLowerCase() === hitProp.toString().toLowerCase()) { return 1; } |
|
|
|
// ¯\_(ツ)_/¯ |
|
return 0.7; |
|
} |
|
|
|
/** |
|
* Check various parts of the parsed text address |
|
* against the results |
|
* |
|
* @param {object} text |
|
* @param {string|number} [text.number] |
|
* @param {string} [text.street] |
|
* @param {string} [text.postalcode] |
|
* @param {string} [text.state] |
|
* @param {string} [text.country] |
|
* @param {object} hit |
|
* @param {object} [hit.address] |
|
* @param {string|number} [hit.address.number] |
|
* @param {string} [hit.address.street] |
|
* @param {string|number} [hit.zip] |
|
* @param {string} [hit.admin1_abbr] |
|
* @param {string} [hit.alpha3] |
|
* @returns {number} |
|
*/ |
|
function checkAddress(text, hit) { |
|
var checkCount = 5; |
|
var res = 0; |
|
|
|
if (check.assigned(text) && check.assigned(text.number) && check.assigned(text.street)) { |
|
res += propMatch(text.number, (hit.address ? hit.address.number : null), false); |
|
res += propMatch(text.street, (hit.address ? hit.address.street : null), false); |
|
res += propMatch(text.postalcode, (hit.address ? hit.address.zip: null), true); |
|
res += propMatch(text.state, hit.admin1_abbr, true); |
|
res += propMatch(text.country, hit.alpha3, true); |
|
|
|
res /= checkCount; |
|
} |
|
else { |
|
res = 1; |
|
} |
|
|
|
return res; |
|
} |
|
|
|
/** |
|
* z-scores have an effective range of -3.00 to +3.00. |
|
* An average z-score is ZERO. |
|
* A negative z-score indicates that the item/element is below |
|
* average and a positive z-score means that the item/element |
|
* in above average. When teachers say they are going to "curve" |
|
* the test, they do this by computing z-scores for the students' test scores. |
|
* |
|
* @param {number} score |
|
* @param {number} mean |
|
* @param {number} stdev |
|
* @returns {number} |
|
*/ |
|
function computeZScore(score, mean, stdev) { |
|
if (stdev < 0.01) { |
|
return 0; |
|
} |
|
// because the effective range of z-scores is -3.00 to +3.00 |
|
// add 10 to ensure a positive value, and then divide by 10+3+3 |
|
// to further normalize to %-like result |
|
return (((score - mean) / (stdev)) + 10) / 16; |
|
} |
|
|
|
/** |
|
* Computes standard deviation given an array of values |
|
* |
|
* @param {Array} scores |
|
* @returns {number} |
|
*/ |
|
function computeStandardDeviation(scores) { |
|
var stdev = stats.stdev(scores); |
|
// if stdev is low, just consider it 0 |
|
return (stdev < 0.01) ? 0 : stdev; |
|
} |
|
|
|
|
|
module.exports = setup;
|
|
|