mirror of https://github.com/gogits/gogs.git
230 lines
6.9 KiB
230 lines
6.9 KiB
// Copyright 2011 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// +build !appengine,!gccgo |
|
|
|
// AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a |
|
// description of the interface that each architecture-specific file |
|
// implements. |
|
|
|
package crc32 |
|
|
|
import "unsafe" |
|
|
|
// This file contains the code to call the SSE 4.2 version of the Castagnoli |
|
// and IEEE CRC. |
|
|
|
// haveSSE41/haveSSE42/haveCLMUL are defined in crc_amd64.s and use |
|
// CPUID to test for SSE 4.1, 4.2 and CLMUL support. |
|
func haveSSE41() bool |
|
func haveSSE42() bool |
|
func haveCLMUL() bool |
|
|
|
// castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE4.2 CRC32 |
|
// instruction. |
|
//go:noescape |
|
func castagnoliSSE42(crc uint32, p []byte) uint32 |
|
|
|
// castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE4.2 CRC32 |
|
// instruction. |
|
//go:noescape |
|
func castagnoliSSE42Triple( |
|
crcA, crcB, crcC uint32, |
|
a, b, c []byte, |
|
rounds uint32, |
|
) (retA uint32, retB uint32, retC uint32) |
|
|
|
// ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ |
|
// instruction as well as SSE 4.1. |
|
//go:noescape |
|
func ieeeCLMUL(crc uint32, p []byte) uint32 |
|
|
|
var sse42 = haveSSE42() |
|
var useFastIEEE = haveCLMUL() && haveSSE41() |
|
|
|
const castagnoliK1 = 168 |
|
const castagnoliK2 = 1344 |
|
|
|
type sse42Table [4]Table |
|
|
|
var castagnoliSSE42TableK1 *sse42Table |
|
var castagnoliSSE42TableK2 *sse42Table |
|
|
|
func archAvailableCastagnoli() bool { |
|
return sse42 |
|
} |
|
|
|
func archInitCastagnoli() { |
|
if !sse42 { |
|
panic("arch-specific Castagnoli not available") |
|
} |
|
castagnoliSSE42TableK1 = new(sse42Table) |
|
castagnoliSSE42TableK2 = new(sse42Table) |
|
// See description in updateCastagnoli. |
|
// t[0][i] = CRC(i000, O) |
|
// t[1][i] = CRC(0i00, O) |
|
// t[2][i] = CRC(00i0, O) |
|
// t[3][i] = CRC(000i, O) |
|
// where O is a sequence of K zeros. |
|
var tmp [castagnoliK2]byte |
|
for b := 0; b < 4; b++ { |
|
for i := 0; i < 256; i++ { |
|
val := uint32(i) << uint32(b*8) |
|
castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1]) |
|
castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:]) |
|
} |
|
} |
|
} |
|
|
|
// castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the |
|
// table given) with the given initial crc value. This corresponds to |
|
// CRC(crc, O) in the description in updateCastagnoli. |
|
func castagnoliShift(table *sse42Table, crc uint32) uint32 { |
|
return table[3][crc>>24] ^ |
|
table[2][(crc>>16)&0xFF] ^ |
|
table[1][(crc>>8)&0xFF] ^ |
|
table[0][crc&0xFF] |
|
} |
|
|
|
func archUpdateCastagnoli(crc uint32, p []byte) uint32 { |
|
if !sse42 { |
|
panic("not available") |
|
} |
|
|
|
// This method is inspired from the algorithm in Intel's white paper: |
|
// "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction" |
|
// The same strategy of splitting the buffer in three is used but the |
|
// combining calculation is different; the complete derivation is explained |
|
// below. |
|
// |
|
// -- The basic idea -- |
|
// |
|
// The CRC32 instruction (available in SSE4.2) can process 8 bytes at a |
|
// time. In recent Intel architectures the instruction takes 3 cycles; |
|
// however the processor can pipeline up to three instructions if they |
|
// don't depend on each other. |
|
// |
|
// Roughly this means that we can process three buffers in about the same |
|
// time we can process one buffer. |
|
// |
|
// The idea is then to split the buffer in three, CRC the three pieces |
|
// separately and then combine the results. |
|
// |
|
// Combining the results requires precomputed tables, so we must choose a |
|
// fixed buffer length to optimize. The longer the length, the faster; but |
|
// only buffers longer than this length will use the optimization. We choose |
|
// two cutoffs and compute tables for both: |
|
// - one around 512: 168*3=504 |
|
// - one around 4KB: 1344*3=4032 |
|
// |
|
// -- The nitty gritty -- |
|
// |
|
// Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with |
|
// initial non-inverted CRC I). This function has the following properties: |
|
// (a) CRC(I, AB) = CRC(CRC(I, A), B) |
|
// (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B) |
|
// |
|
// Say we want to compute CRC(I, ABC) where A, B, C are three sequences of |
|
// K bytes each, where K is a fixed constant. Let O be the sequence of K zero |
|
// bytes. |
|
// |
|
// CRC(I, ABC) = CRC(I, ABO xor C) |
|
// = CRC(I, ABO) xor CRC(0, C) |
|
// = CRC(CRC(I, AB), O) xor CRC(0, C) |
|
// = CRC(CRC(I, AO xor B), O) xor CRC(0, C) |
|
// = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C) |
|
// = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C) |
|
// |
|
// The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B), |
|
// and CRC(0, C) efficiently. We just need to find a way to quickly compute |
|
// CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these |
|
// values; since we can't have a 32-bit table, we break it up into four |
|
// 8-bit tables: |
|
// |
|
// CRC(uvwx, O) = CRC(u000, O) xor |
|
// CRC(0v00, O) xor |
|
// CRC(00w0, O) xor |
|
// CRC(000x, O) |
|
// |
|
// We can compute tables corresponding to the four terms for all 8-bit |
|
// values. |
|
|
|
crc = ^crc |
|
|
|
// If a buffer is long enough to use the optimization, process the first few |
|
// bytes to align the buffer to an 8 byte boundary (if necessary). |
|
if len(p) >= castagnoliK1*3 { |
|
delta := int(uintptr(unsafe.Pointer(&p[0])) & 7) |
|
if delta != 0 { |
|
delta = 8 - delta |
|
crc = castagnoliSSE42(crc, p[:delta]) |
|
p = p[delta:] |
|
} |
|
} |
|
|
|
// Process 3*K2 at a time. |
|
for len(p) >= castagnoliK2*3 { |
|
// Compute CRC(I, A), CRC(0, B), and CRC(0, C). |
|
crcA, crcB, crcC := castagnoliSSE42Triple( |
|
crc, 0, 0, |
|
p, p[castagnoliK2:], p[castagnoliK2*2:], |
|
castagnoliK2/24) |
|
|
|
// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B) |
|
crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB |
|
// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C) |
|
crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC |
|
p = p[castagnoliK2*3:] |
|
} |
|
|
|
// Process 3*K1 at a time. |
|
for len(p) >= castagnoliK1*3 { |
|
// Compute CRC(I, A), CRC(0, B), and CRC(0, C). |
|
crcA, crcB, crcC := castagnoliSSE42Triple( |
|
crc, 0, 0, |
|
p, p[castagnoliK1:], p[castagnoliK1*2:], |
|
castagnoliK1/24) |
|
|
|
// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B) |
|
crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB |
|
// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C) |
|
crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC |
|
p = p[castagnoliK1*3:] |
|
} |
|
|
|
// Use the simple implementation for what's left. |
|
crc = castagnoliSSE42(crc, p) |
|
return ^crc |
|
} |
|
|
|
func archAvailableIEEE() bool { |
|
return useFastIEEE |
|
} |
|
|
|
var archIeeeTable8 *slicing8Table |
|
|
|
func archInitIEEE() { |
|
if !useFastIEEE { |
|
panic("not available") |
|
} |
|
// We still use slicing-by-8 for small buffers. |
|
archIeeeTable8 = slicingMakeTable(IEEE) |
|
} |
|
|
|
func archUpdateIEEE(crc uint32, p []byte) uint32 { |
|
if !useFastIEEE { |
|
panic("not available") |
|
} |
|
|
|
if len(p) >= 64 { |
|
left := len(p) & 15 |
|
do := len(p) - left |
|
crc = ^ieeeCLMUL(^crc, p[:do]) |
|
p = p[do:] |
|
} |
|
if len(p) == 0 { |
|
return crc |
|
} |
|
return slicingUpdate(crc, archIeeeTable8, p) |
|
}
|
|
|