mirror of https://github.com/gogits/gogs.git
625 lines
15 KiB
625 lines
15 KiB
// Copyright 2013 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package ssh |
|
|
|
import ( |
|
"crypto/rand" |
|
"errors" |
|
"fmt" |
|
"io" |
|
"log" |
|
"net" |
|
"sync" |
|
) |
|
|
|
// debugHandshake, if set, prints messages sent and received. Key |
|
// exchange messages are printed as if DH were used, so the debug |
|
// messages are wrong when using ECDH. |
|
const debugHandshake = false |
|
|
|
// chanSize sets the amount of buffering SSH connections. This is |
|
// primarily for testing: setting chanSize=0 uncovers deadlocks more |
|
// quickly. |
|
const chanSize = 16 |
|
|
|
// keyingTransport is a packet based transport that supports key |
|
// changes. It need not be thread-safe. It should pass through |
|
// msgNewKeys in both directions. |
|
type keyingTransport interface { |
|
packetConn |
|
|
|
// prepareKeyChange sets up a key change. The key change for a |
|
// direction will be effected if a msgNewKeys message is sent |
|
// or received. |
|
prepareKeyChange(*algorithms, *kexResult) error |
|
} |
|
|
|
// handshakeTransport implements rekeying on top of a keyingTransport |
|
// and offers a thread-safe writePacket() interface. |
|
type handshakeTransport struct { |
|
conn keyingTransport |
|
config *Config |
|
|
|
serverVersion []byte |
|
clientVersion []byte |
|
|
|
// hostKeys is non-empty if we are the server. In that case, |
|
// it contains all host keys that can be used to sign the |
|
// connection. |
|
hostKeys []Signer |
|
|
|
// hostKeyAlgorithms is non-empty if we are the client. In that case, |
|
// we accept these key types from the server as host key. |
|
hostKeyAlgorithms []string |
|
|
|
// On read error, incoming is closed, and readError is set. |
|
incoming chan []byte |
|
readError error |
|
|
|
mu sync.Mutex |
|
writeError error |
|
sentInitPacket []byte |
|
sentInitMsg *kexInitMsg |
|
pendingPackets [][]byte // Used when a key exchange is in progress. |
|
|
|
// If the read loop wants to schedule a kex, it pings this |
|
// channel, and the write loop will send out a kex |
|
// message. |
|
requestKex chan struct{} |
|
|
|
// If the other side requests or confirms a kex, its kexInit |
|
// packet is sent here for the write loop to find it. |
|
startKex chan *pendingKex |
|
|
|
// data for host key checking |
|
hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error |
|
dialAddress string |
|
remoteAddr net.Addr |
|
|
|
// Algorithms agreed in the last key exchange. |
|
algorithms *algorithms |
|
|
|
readPacketsLeft uint32 |
|
readBytesLeft int64 |
|
|
|
writePacketsLeft uint32 |
|
writeBytesLeft int64 |
|
|
|
// The session ID or nil if first kex did not complete yet. |
|
sessionID []byte |
|
} |
|
|
|
type pendingKex struct { |
|
otherInit []byte |
|
done chan error |
|
} |
|
|
|
func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport { |
|
t := &handshakeTransport{ |
|
conn: conn, |
|
serverVersion: serverVersion, |
|
clientVersion: clientVersion, |
|
incoming: make(chan []byte, chanSize), |
|
requestKex: make(chan struct{}, 1), |
|
startKex: make(chan *pendingKex, 1), |
|
|
|
config: config, |
|
} |
|
|
|
// We always start with a mandatory key exchange. |
|
t.requestKex <- struct{}{} |
|
return t |
|
} |
|
|
|
func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport { |
|
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion) |
|
t.dialAddress = dialAddr |
|
t.remoteAddr = addr |
|
t.hostKeyCallback = config.HostKeyCallback |
|
if config.HostKeyAlgorithms != nil { |
|
t.hostKeyAlgorithms = config.HostKeyAlgorithms |
|
} else { |
|
t.hostKeyAlgorithms = supportedHostKeyAlgos |
|
} |
|
go t.readLoop() |
|
go t.kexLoop() |
|
return t |
|
} |
|
|
|
func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport { |
|
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion) |
|
t.hostKeys = config.hostKeys |
|
go t.readLoop() |
|
go t.kexLoop() |
|
return t |
|
} |
|
|
|
func (t *handshakeTransport) getSessionID() []byte { |
|
return t.sessionID |
|
} |
|
|
|
// waitSession waits for the session to be established. This should be |
|
// the first thing to call after instantiating handshakeTransport. |
|
func (t *handshakeTransport) waitSession() error { |
|
p, err := t.readPacket() |
|
if err != nil { |
|
return err |
|
} |
|
if p[0] != msgNewKeys { |
|
return fmt.Errorf("ssh: first packet should be msgNewKeys") |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func (t *handshakeTransport) id() string { |
|
if len(t.hostKeys) > 0 { |
|
return "server" |
|
} |
|
return "client" |
|
} |
|
|
|
func (t *handshakeTransport) printPacket(p []byte, write bool) { |
|
action := "got" |
|
if write { |
|
action = "sent" |
|
} |
|
|
|
if p[0] == msgChannelData || p[0] == msgChannelExtendedData { |
|
log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p)) |
|
} else { |
|
msg, err := decode(p) |
|
log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err) |
|
} |
|
} |
|
|
|
func (t *handshakeTransport) readPacket() ([]byte, error) { |
|
p, ok := <-t.incoming |
|
if !ok { |
|
return nil, t.readError |
|
} |
|
return p, nil |
|
} |
|
|
|
func (t *handshakeTransport) readLoop() { |
|
first := true |
|
for { |
|
p, err := t.readOnePacket(first) |
|
first = false |
|
if err != nil { |
|
t.readError = err |
|
close(t.incoming) |
|
break |
|
} |
|
if p[0] == msgIgnore || p[0] == msgDebug { |
|
continue |
|
} |
|
t.incoming <- p |
|
} |
|
|
|
// Stop writers too. |
|
t.recordWriteError(t.readError) |
|
|
|
// Unblock the writer should it wait for this. |
|
close(t.startKex) |
|
|
|
// Don't close t.requestKex; it's also written to from writePacket. |
|
} |
|
|
|
func (t *handshakeTransport) pushPacket(p []byte) error { |
|
if debugHandshake { |
|
t.printPacket(p, true) |
|
} |
|
return t.conn.writePacket(p) |
|
} |
|
|
|
func (t *handshakeTransport) getWriteError() error { |
|
t.mu.Lock() |
|
defer t.mu.Unlock() |
|
return t.writeError |
|
} |
|
|
|
func (t *handshakeTransport) recordWriteError(err error) { |
|
t.mu.Lock() |
|
defer t.mu.Unlock() |
|
if t.writeError == nil && err != nil { |
|
t.writeError = err |
|
} |
|
} |
|
|
|
func (t *handshakeTransport) requestKeyExchange() { |
|
select { |
|
case t.requestKex <- struct{}{}: |
|
default: |
|
// something already requested a kex, so do nothing. |
|
} |
|
} |
|
|
|
func (t *handshakeTransport) kexLoop() { |
|
|
|
write: |
|
for t.getWriteError() == nil { |
|
var request *pendingKex |
|
var sent bool |
|
|
|
for request == nil || !sent { |
|
var ok bool |
|
select { |
|
case request, ok = <-t.startKex: |
|
if !ok { |
|
break write |
|
} |
|
case <-t.requestKex: |
|
break |
|
} |
|
|
|
if !sent { |
|
if err := t.sendKexInit(); err != nil { |
|
t.recordWriteError(err) |
|
break |
|
} |
|
sent = true |
|
} |
|
} |
|
|
|
if err := t.getWriteError(); err != nil { |
|
if request != nil { |
|
request.done <- err |
|
} |
|
break |
|
} |
|
|
|
// We're not servicing t.requestKex, but that is OK: |
|
// we never block on sending to t.requestKex. |
|
|
|
// We're not servicing t.startKex, but the remote end |
|
// has just sent us a kexInitMsg, so it can't send |
|
// another key change request, until we close the done |
|
// channel on the pendingKex request. |
|
|
|
err := t.enterKeyExchange(request.otherInit) |
|
|
|
t.mu.Lock() |
|
t.writeError = err |
|
t.sentInitPacket = nil |
|
t.sentInitMsg = nil |
|
t.writePacketsLeft = packetRekeyThreshold |
|
if t.config.RekeyThreshold > 0 { |
|
t.writeBytesLeft = int64(t.config.RekeyThreshold) |
|
} else if t.algorithms != nil { |
|
t.writeBytesLeft = t.algorithms.w.rekeyBytes() |
|
} |
|
|
|
// we have completed the key exchange. Since the |
|
// reader is still blocked, it is safe to clear out |
|
// the requestKex channel. This avoids the situation |
|
// where: 1) we consumed our own request for the |
|
// initial kex, and 2) the kex from the remote side |
|
// caused another send on the requestKex channel, |
|
clear: |
|
for { |
|
select { |
|
case <-t.requestKex: |
|
// |
|
default: |
|
break clear |
|
} |
|
} |
|
|
|
request.done <- t.writeError |
|
|
|
// kex finished. Push packets that we received while |
|
// the kex was in progress. Don't look at t.startKex |
|
// and don't increment writtenSinceKex: if we trigger |
|
// another kex while we are still busy with the last |
|
// one, things will become very confusing. |
|
for _, p := range t.pendingPackets { |
|
t.writeError = t.pushPacket(p) |
|
if t.writeError != nil { |
|
break |
|
} |
|
} |
|
t.pendingPackets = t.pendingPackets[:0] |
|
t.mu.Unlock() |
|
} |
|
|
|
// drain startKex channel. We don't service t.requestKex |
|
// because nobody does blocking sends there. |
|
go func() { |
|
for init := range t.startKex { |
|
init.done <- t.writeError |
|
} |
|
}() |
|
|
|
// Unblock reader. |
|
t.conn.Close() |
|
} |
|
|
|
// The protocol uses uint32 for packet counters, so we can't let them |
|
// reach 1<<32. We will actually read and write more packets than |
|
// this, though: the other side may send more packets, and after we |
|
// hit this limit on writing we will send a few more packets for the |
|
// key exchange itself. |
|
const packetRekeyThreshold = (1 << 31) |
|
|
|
func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) { |
|
p, err := t.conn.readPacket() |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
if t.readPacketsLeft > 0 { |
|
t.readPacketsLeft-- |
|
} else { |
|
t.requestKeyExchange() |
|
} |
|
|
|
if t.readBytesLeft > 0 { |
|
t.readBytesLeft -= int64(len(p)) |
|
} else { |
|
t.requestKeyExchange() |
|
} |
|
|
|
if debugHandshake { |
|
t.printPacket(p, false) |
|
} |
|
|
|
if first && p[0] != msgKexInit { |
|
return nil, fmt.Errorf("ssh: first packet should be msgKexInit") |
|
} |
|
|
|
if p[0] != msgKexInit { |
|
return p, nil |
|
} |
|
|
|
firstKex := t.sessionID == nil |
|
|
|
kex := pendingKex{ |
|
done: make(chan error, 1), |
|
otherInit: p, |
|
} |
|
t.startKex <- &kex |
|
err = <-kex.done |
|
|
|
if debugHandshake { |
|
log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err) |
|
} |
|
|
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
t.readPacketsLeft = packetRekeyThreshold |
|
if t.config.RekeyThreshold > 0 { |
|
t.readBytesLeft = int64(t.config.RekeyThreshold) |
|
} else { |
|
t.readBytesLeft = t.algorithms.r.rekeyBytes() |
|
} |
|
|
|
// By default, a key exchange is hidden from higher layers by |
|
// translating it into msgIgnore. |
|
successPacket := []byte{msgIgnore} |
|
if firstKex { |
|
// sendKexInit() for the first kex waits for |
|
// msgNewKeys so the authentication process is |
|
// guaranteed to happen over an encrypted transport. |
|
successPacket = []byte{msgNewKeys} |
|
} |
|
|
|
return successPacket, nil |
|
} |
|
|
|
// sendKexInit sends a key change message. |
|
func (t *handshakeTransport) sendKexInit() error { |
|
t.mu.Lock() |
|
defer t.mu.Unlock() |
|
if t.sentInitMsg != nil { |
|
// kexInits may be sent either in response to the other side, |
|
// or because our side wants to initiate a key change, so we |
|
// may have already sent a kexInit. In that case, don't send a |
|
// second kexInit. |
|
return nil |
|
} |
|
|
|
msg := &kexInitMsg{ |
|
KexAlgos: t.config.KeyExchanges, |
|
CiphersClientServer: t.config.Ciphers, |
|
CiphersServerClient: t.config.Ciphers, |
|
MACsClientServer: t.config.MACs, |
|
MACsServerClient: t.config.MACs, |
|
CompressionClientServer: supportedCompressions, |
|
CompressionServerClient: supportedCompressions, |
|
} |
|
io.ReadFull(rand.Reader, msg.Cookie[:]) |
|
|
|
if len(t.hostKeys) > 0 { |
|
for _, k := range t.hostKeys { |
|
msg.ServerHostKeyAlgos = append( |
|
msg.ServerHostKeyAlgos, k.PublicKey().Type()) |
|
} |
|
} else { |
|
msg.ServerHostKeyAlgos = t.hostKeyAlgorithms |
|
} |
|
packet := Marshal(msg) |
|
|
|
// writePacket destroys the contents, so save a copy. |
|
packetCopy := make([]byte, len(packet)) |
|
copy(packetCopy, packet) |
|
|
|
if err := t.pushPacket(packetCopy); err != nil { |
|
return err |
|
} |
|
|
|
t.sentInitMsg = msg |
|
t.sentInitPacket = packet |
|
|
|
return nil |
|
} |
|
|
|
func (t *handshakeTransport) writePacket(p []byte) error { |
|
switch p[0] { |
|
case msgKexInit: |
|
return errors.New("ssh: only handshakeTransport can send kexInit") |
|
case msgNewKeys: |
|
return errors.New("ssh: only handshakeTransport can send newKeys") |
|
} |
|
|
|
t.mu.Lock() |
|
defer t.mu.Unlock() |
|
if t.writeError != nil { |
|
return t.writeError |
|
} |
|
|
|
if t.sentInitMsg != nil { |
|
// Copy the packet so the writer can reuse the buffer. |
|
cp := make([]byte, len(p)) |
|
copy(cp, p) |
|
t.pendingPackets = append(t.pendingPackets, cp) |
|
return nil |
|
} |
|
|
|
if t.writeBytesLeft > 0 { |
|
t.writeBytesLeft -= int64(len(p)) |
|
} else { |
|
t.requestKeyExchange() |
|
} |
|
|
|
if t.writePacketsLeft > 0 { |
|
t.writePacketsLeft-- |
|
} else { |
|
t.requestKeyExchange() |
|
} |
|
|
|
if err := t.pushPacket(p); err != nil { |
|
t.writeError = err |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func (t *handshakeTransport) Close() error { |
|
return t.conn.Close() |
|
} |
|
|
|
func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error { |
|
if debugHandshake { |
|
log.Printf("%s entered key exchange", t.id()) |
|
} |
|
|
|
otherInit := &kexInitMsg{} |
|
if err := Unmarshal(otherInitPacket, otherInit); err != nil { |
|
return err |
|
} |
|
|
|
magics := handshakeMagics{ |
|
clientVersion: t.clientVersion, |
|
serverVersion: t.serverVersion, |
|
clientKexInit: otherInitPacket, |
|
serverKexInit: t.sentInitPacket, |
|
} |
|
|
|
clientInit := otherInit |
|
serverInit := t.sentInitMsg |
|
if len(t.hostKeys) == 0 { |
|
clientInit, serverInit = serverInit, clientInit |
|
|
|
magics.clientKexInit = t.sentInitPacket |
|
magics.serverKexInit = otherInitPacket |
|
} |
|
|
|
var err error |
|
t.algorithms, err = findAgreedAlgorithms(clientInit, serverInit) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
// We don't send FirstKexFollows, but we handle receiving it. |
|
// |
|
// RFC 4253 section 7 defines the kex and the agreement method for |
|
// first_kex_packet_follows. It states that the guessed packet |
|
// should be ignored if the "kex algorithm and/or the host |
|
// key algorithm is guessed wrong (server and client have |
|
// different preferred algorithm), or if any of the other |
|
// algorithms cannot be agreed upon". The other algorithms have |
|
// already been checked above so the kex algorithm and host key |
|
// algorithm are checked here. |
|
if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) { |
|
// other side sent a kex message for the wrong algorithm, |
|
// which we have to ignore. |
|
if _, err := t.conn.readPacket(); err != nil { |
|
return err |
|
} |
|
} |
|
|
|
kex, ok := kexAlgoMap[t.algorithms.kex] |
|
if !ok { |
|
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex) |
|
} |
|
|
|
var result *kexResult |
|
if len(t.hostKeys) > 0 { |
|
result, err = t.server(kex, t.algorithms, &magics) |
|
} else { |
|
result, err = t.client(kex, t.algorithms, &magics) |
|
} |
|
|
|
if err != nil { |
|
return err |
|
} |
|
|
|
if t.sessionID == nil { |
|
t.sessionID = result.H |
|
} |
|
result.SessionID = t.sessionID |
|
|
|
t.conn.prepareKeyChange(t.algorithms, result) |
|
if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil { |
|
return err |
|
} |
|
if packet, err := t.conn.readPacket(); err != nil { |
|
return err |
|
} else if packet[0] != msgNewKeys { |
|
return unexpectedMessageError(msgNewKeys, packet[0]) |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) { |
|
var hostKey Signer |
|
for _, k := range t.hostKeys { |
|
if algs.hostKey == k.PublicKey().Type() { |
|
hostKey = k |
|
} |
|
} |
|
|
|
r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey) |
|
return r, err |
|
} |
|
|
|
func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) { |
|
result, err := kex.Client(t.conn, t.config.Rand, magics) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
hostKey, err := ParsePublicKey(result.HostKey) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
if err := verifyHostKeySignature(hostKey, result); err != nil { |
|
return nil, err |
|
} |
|
|
|
if t.hostKeyCallback != nil { |
|
err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey) |
|
if err != nil { |
|
return nil, err |
|
} |
|
} |
|
|
|
return result, nil |
|
}
|
|
|