mirror of https://github.com/Kozea/pygal.git
Jeffrey Starr
11 years ago
2 changed files with 148 additions and 1 deletions
@ -0,0 +1,146 @@
|
||||
# -*- coding: utf-8 -*- |
||||
# This file is part of pygal |
||||
# |
||||
# A python svg graph plotting library |
||||
# Copyright © 2012-2013 Kozea |
||||
# |
||||
# This library is free software: you can redistribute it and/or modify it under |
||||
# the terms of the GNU Lesser General Public License as published by the Free |
||||
# Software Foundation, either version 3 of the License, or (at your option) any |
||||
# later version. |
||||
# |
||||
# This library is distributed in the hope that it will be useful, but WITHOUT |
||||
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
||||
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more |
||||
# details. |
||||
# |
||||
# You should have received a copy of the GNU Lesser General Public License |
||||
# along with pygal. If not, see <http://www.gnu.org/licenses/>. |
||||
""" |
||||
Box plot |
||||
""" |
||||
|
||||
from __future__ import division |
||||
from pygal.graph.graph import Graph |
||||
from pygal.util import compute_scale, decorate |
||||
|
||||
|
||||
class Box(Graph): |
||||
""" |
||||
Box plot |
||||
For each series, shows the median value, the 25th and 75th percentiles, and the values within |
||||
1.5 times the interquartile range of the 25th and 75th percentiles. |
||||
|
||||
See http://en.wikipedia.org/wiki/Box_plot |
||||
""" |
||||
_series_margin = .06 |
||||
|
||||
def __init__(self, *args, **kwargs): |
||||
super(Box, self).__init__(*args, **kwargs) |
||||
|
||||
def _compute(self): |
||||
""" |
||||
Compute parameters necessary for later steps within the rendering process |
||||
""" |
||||
# Note: this code was copied from Bar graph |
||||
if self._min: |
||||
self._box.ymin = min(self._min, self.zero) |
||||
if self._max: |
||||
self._box.ymax = max(self._max, self.zero) |
||||
|
||||
x_pos = [ |
||||
x / self._len for x in range(self._len + 1) |
||||
] if self._len > 1 else [0, 1] # Center if only one value |
||||
|
||||
self._points(x_pos) |
||||
|
||||
y_pos = compute_scale( |
||||
self._box.ymin, self._box.ymax, self.logarithmic, self.order_min |
||||
) if not self.y_labels else map(float, self.y_labels) |
||||
|
||||
self._x_labels = self.x_labels and list(zip(self.x_labels, [ |
||||
(i + .5) / self._len for i in range(self._len)])) |
||||
self._y_labels = list(zip(map(self._format, y_pos), y_pos)) |
||||
|
||||
def _plot(self): |
||||
""" |
||||
Plot the series data |
||||
""" |
||||
for index, serie in enumerate(self.series): |
||||
self._boxf(self._serie(index), serie, index) |
||||
|
||||
def _boxf(self, serie_node, serie, index): |
||||
""" |
||||
For a specific series, draw the box plot. |
||||
""" |
||||
# Note: q0 and q4 do not literally mean the zero-th quartile and the fourth quartile, but rather |
||||
# the distance from 1.5 times the inter-quartile range to Q1 and Q3, respectively. |
||||
q0, q1, q2, q3, q4 = self._box_points(serie.values) |
||||
boxes = self.svg.node(serie_node['plot'], class_="boxes") |
||||
|
||||
metadata = serie.metadata.get(0) |
||||
|
||||
box = decorate( |
||||
self.svg, |
||||
self.svg.node(boxes, class_='box'), |
||||
metadata) |
||||
val = self._format(q2) |
||||
|
||||
x_center, y_center = self._draw_box(box, (q0, q1, q2, q3, q4), index) |
||||
self._tooltip_data(box, val, x_center, y_center, classes="centered") |
||||
#print(val) |
||||
#self._static_value(box, val, x_center, y_center) |
||||
|
||||
def _draw_box(self, parent_node, quartiles, box_index): |
||||
""" |
||||
Return the center of a bounding box defined by a box plot. Draws a box plot on self.svg. |
||||
""" |
||||
width = (self.view.x(1) - self.view.x(0)) / self._len |
||||
#x, y = self.view((x, y)) |
||||
series_margin = width * self._series_margin |
||||
#x += series_margin |
||||
width -= 2 * series_margin |
||||
#height = self.view.y(y_zero) - y |
||||
left_edge = self.view.x(0) + width * box_index |
||||
|
||||
# draw lines for whiskers - bottom, median, and top |
||||
for whisker in (quartiles[0], quartiles[2], quartiles[4]): |
||||
self.svg.line(parent_node, |
||||
coords=[(left_edge, self.view.y(whisker)), (left_edge + width, self.view.y(whisker))], |
||||
attrib={'stroke-width': 3}) |
||||
|
||||
# box, bounded by Q1 and Q3 |
||||
self.svg.node(parent_node, |
||||
tag='rect', |
||||
x=left_edge, |
||||
y=self.view.y(quartiles[1]), |
||||
height=self.view.y(quartiles[3]) - self.view.y(quartiles[1]), |
||||
width=width, |
||||
attrib={'fill-opacity': 0.25}) |
||||
|
||||
return (left_edge + width / 2, self.view.height / 2) |
||||
|
||||
@staticmethod |
||||
def _box_points(values): |
||||
""" |
||||
Return a 5-tuple of Q1 - 1.5 * IQR, Q1, Median, Q3, and Q3 + 1.5 * IQR for a list of numeric values |
||||
|
||||
Uses quartile definition from Mendenhall, W. and Sincich, T. L. Statistics for Engineering and the |
||||
Sciences, 4th ed. Prentice-Hall, 1995. |
||||
""" |
||||
n = len(values) |
||||
if not n: |
||||
return 0, 0, 0, 0, 0 |
||||
else: |
||||
s = sorted(values) # sort the copy in case the originals must stay in original order |
||||
if n % 2 == 0: # n is even |
||||
q2 = (values[n // 2] + values[n // 2 + 1]) / 2 |
||||
else: |
||||
q2 = values[(n + 1) // 2] |
||||
|
||||
q1 = values[int(round((n + 1) / 4))] |
||||
q3 = values[int(round((3 * n + 3) / 4))] |
||||
iqr = q3 - q1 |
||||
q0 = q1 - 1.5 * iqr |
||||
q4 = q3 + 1.5 * iqr |
||||
return q0, q1, q2, q3, q4 |
Loading…
Reference in new issue