mirror of https://github.com/Kozea/pygal.git
Python to generate nice looking SVG graph
http://pygal.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
6.6 KiB
216 lines
6.6 KiB
# -*- coding: utf-8 -*- |
|
# This file is part of pygal |
|
# |
|
# A python svg graph plotting library |
|
# Copyright © 2012-2015 Kozea |
|
# |
|
# This library is free software: you can redistribute it and/or modify it under |
|
# the terms of the GNU Lesser General Public License as published by the Free |
|
# Software Foundation, either version 3 of the License, or (at your option) any |
|
# later version. |
|
# |
|
# This library is distributed in the hope that it will be useful, but WITHOUT |
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
|
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more |
|
# details. |
|
# |
|
# You should have received a copy of the GNU Lesser General Public License |
|
# along with pygal. If not, see <http://www.gnu.org/licenses/>. |
|
""" |
|
Interpolation |
|
|
|
""" |
|
from __future__ import division |
|
from math import sin |
|
|
|
|
|
def quadratic_interpolate(x, y, precision=250, **kwargs): |
|
n = len(x) - 1 |
|
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
delta_y = [y2 - y1 for y1, y2 in zip(y, y[1:])] |
|
slope = [delta_y[i] / delta_x[i] if delta_x[i] else 1 for i in range(n)] |
|
|
|
# Quadratic spline: a + bx + cx² |
|
a = y |
|
b = [0] * (n + 1) |
|
c = [0] * (n + 1) |
|
|
|
for i in range(1, n): |
|
b[i] = 2 * slope[i - 1] - b[i - 1] |
|
|
|
c = [(slope[i] - b[i]) / delta_x[i] if delta_x[i] else 0 for i in range(n)] |
|
|
|
for i in range(n + 1): |
|
yield x[i], a[i] |
|
if i == n or delta_x[i] == 0: |
|
continue |
|
for s in range(1, precision): |
|
X = s * delta_x[i] / precision |
|
X2 = X * X |
|
yield x[i] + X, a[i] + b[i] * X + c[i] * X2 |
|
|
|
|
|
def cubic_interpolate(x, y, precision=250, **kwargs): |
|
n = len(x) - 1 |
|
# Spline equation is a + bx + cx² + dx³ |
|
# ie: Spline part i equation is a[i] + b[i]x + c[i]x² + d[i]x³ |
|
a = y |
|
b = [0] * (n + 1) |
|
c = [0] * (n + 1) |
|
d = [0] * (n + 1) |
|
m = [0] * (n + 1) |
|
z = [0] * (n + 1) |
|
|
|
h = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
k = [a2 - a1 for a1, a2 in zip(a, a[1:])] |
|
g = [k[i] / h[i] if h[i] else 1 for i in range(n)] |
|
|
|
for i in range(1, n): |
|
j = i - 1 |
|
l = 1 / (2 * (x[i + 1] - x[j]) - h[j] * m[j]) if x[i + 1] - x[j] else 0 |
|
m[i] = h[i] * l |
|
z[i] = (3 * (g[i] - g[j]) - h[j] * z[j]) * l |
|
|
|
for j in reversed(range(n)): |
|
if h[j] == 0: |
|
continue |
|
c[j] = z[j] - (m[j] * c[j + 1]) |
|
b[j] = g[j] - (h[j] * (c[j + 1] + 2 * c[j])) / 3 |
|
d[j] = (c[j + 1] - c[j]) / (3 * h[j]) |
|
|
|
for i in range(n + 1): |
|
yield x[i], a[i] |
|
if i == n or h[i] == 0: |
|
continue |
|
for s in range(1, precision): |
|
X = s * h[i] / precision |
|
X2 = X * X |
|
X3 = X2 * X |
|
yield x[i] + X, a[i] + b[i] * X + c[i] * X2 + d[i] * X3 |
|
|
|
|
|
def hermite_interpolate(x, y, precision=250, |
|
type='cardinal', c=None, b=None, t=None): |
|
n = len(x) - 1 |
|
m = [1] * (n + 1) |
|
w = [1] * (n + 1) |
|
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
if type == 'catmull_rom': |
|
type = 'cardinal' |
|
c = 0 |
|
if type == 'finite_difference': |
|
for i in range(1, n): |
|
m[i] = w[i] = .5 * ( |
|
(y[i + 1] - y[i]) / (x[i + 1] - x[i]) + |
|
(y[i] - y[i - 1]) / ( |
|
x[i] - x[i - 1]) |
|
) if x[i + 1] - x[i] and x[i] - x[i - 1] else 0 |
|
|
|
elif type == 'kochanek_bartels': |
|
c = c or 0 |
|
b = b or 0 |
|
t = t or 0 |
|
for i in range(1, n): |
|
m[i] = .5 * ((1 - t) * (1 + b) * (1 + c) * (y[i] - y[i - 1]) + |
|
(1 - t) * (1 - b) * (1 - c) * (y[i + 1] - y[i])) |
|
w[i] = .5 * ((1 - t) * (1 + b) * (1 - c) * (y[i] - y[i - 1]) + |
|
(1 - t) * (1 - b) * (1 + c) * (y[i + 1] - y[i])) |
|
|
|
if type == 'cardinal': |
|
c = c or 0 |
|
for i in range(1, n): |
|
m[i] = w[i] = (1 - c) * ( |
|
y[i + 1] - y[i - 1]) / ( |
|
x[i + 1] - x[i - 1]) if x[i + 1] - x[i - 1] else 0 |
|
|
|
def p(i, x_): |
|
t = (x_ - x[i]) / delta_x[i] |
|
t2 = t * t |
|
t3 = t2 * t |
|
|
|
h00 = 2 * t3 - 3 * t2 + 1 |
|
h10 = t3 - 2 * t2 + t |
|
h01 = - 2 * t3 + 3 * t2 |
|
h11 = t3 - t2 |
|
|
|
return (h00 * y[i] + |
|
h10 * m[i] * delta_x[i] + |
|
h01 * y[i + 1] + |
|
h11 * w[i + 1] * delta_x[i]) |
|
|
|
for i in range(n + 1): |
|
yield x[i], y[i] |
|
if i == n or delta_x[i] == 0: |
|
continue |
|
for s in range(1, precision): |
|
X = x[i] + s * delta_x[i] / precision |
|
yield X, p(i, X) |
|
|
|
|
|
def lagrange_interpolate(x, y, precision=250, **kwargs): |
|
n = len(x) - 1 |
|
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
for i in range(n + 1): |
|
yield x[i], y[i] |
|
if i == n or delta_x[i] == 0: |
|
continue |
|
|
|
for s in range(1, precision): |
|
X = x[i] + s * delta_x[i] / precision |
|
s = 0 |
|
for k in range(n + 1): |
|
p = 1 |
|
for m in range(n + 1): |
|
if m == k: |
|
continue |
|
if x[k] - x[m]: |
|
p *= (X - x[m]) / (x[k] - x[m]) |
|
s += y[k] * p |
|
yield X, s |
|
|
|
|
|
def trigonometric_interpolate(x, y, precision=250, **kwargs): |
|
"""As per http://en.wikipedia.org/wiki/Trigonometric_interpolation""" |
|
n = len(x) - 1 |
|
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
for i in range(n + 1): |
|
yield x[i], y[i] |
|
if i == n or delta_x[i] == 0: |
|
continue |
|
|
|
for s in range(1, precision): |
|
X = x[i] + s * delta_x[i] / precision |
|
s = 0 |
|
for k in range(n + 1): |
|
p = 1 |
|
for m in range(n + 1): |
|
if m == k: |
|
continue |
|
if sin(0.5 * (x[k] - x[m])): |
|
p *= sin(0.5 * (X - x[m])) / sin(0.5 * (x[k] - x[m])) |
|
s += y[k] * p |
|
yield X, s |
|
|
|
""" |
|
These functions takes two lists of points x and y and |
|
returns an iterator over the interpolation between all these points |
|
with `precision` interpolated points between each of them |
|
|
|
""" |
|
INTERPOLATIONS = { |
|
'quadratic': quadratic_interpolate, |
|
'cubic': cubic_interpolate, |
|
'hermite': hermite_interpolate, |
|
'lagrange': lagrange_interpolate, |
|
'trigonometric': trigonometric_interpolate |
|
} |
|
|
|
|
|
if __name__ == '__main__': |
|
from pygal import XY |
|
points = [(.1, 7), (.3, -4), (.6, 10), (.9, 8), (1.4, 3), (1.7, 1)] |
|
xy = XY(show_dots=False) |
|
xy.add('normal', points) |
|
xy.add('quadratic', quadratic_interpolate(*zip(*points))) |
|
xy.add('cubic', cubic_interpolate(*zip(*points))) |
|
xy.render_in_browser()
|
|
|