Python to generate nice looking SVG graph http://pygal.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

232 lines
6.5 KiB

#!python
# $Id$
from operator import itemgetter, add
from lxml import etree
from util import flatten, float_range
from svg.charts.graph import Graph
class Line(Graph):
""" === Create presentation quality SVG line graphs easily
= Synopsis
require 'SVG/Graph/Line'
fields = %w(Jan Feb Mar);
data_sales_02 = [12, 45, 21]
data_sales_03 = [15, 30, 40]
graph = SVG::Graph::Line.new({
:height => 500,
:width => 300,
:fields => fields,
})
graph.add_data({
:data => data_sales_02,
:title => 'Sales 2002',
})
graph.add_data({
:data => data_sales_03,
:title => 'Sales 2003',
})
print "Content-type: image/svg+xml\r\n\r\n";
print graph.burn();
= Description
This object aims to allow you to easily create high quality
SVG line graphs. You can either use the default style sheet
or supply your own. Either way there are many options which can
be configured to give you control over how the graph is
generated - with or without a key, data elements at each point,
title, subtitle etc.
= Examples
http://www.germane-software/repositories/public/SVG/test/single.rb
= Notes
The default stylesheet handles upto 10 data sets, if you
use more you must create your own stylesheet and add the
additional settings for the extra data sets. You will know
if you go over 10 data sets as they will have no style and
be in black.
= See also
* SVG::Graph::Graph
* SVG::Graph::BarHorizontal
* SVG::Graph::Bar
* SVG::Graph::Pie
* SVG::Graph::Plot
* SVG::Graph::TimeSeries
== Author
Sean E. Russell <serATgermaneHYPHENsoftwareDOTcom>
Copyright 2004 Sean E. Russell
This software is available under the Ruby license[LICENSE.txt]
"""
"""Show a small circle on the graph where the line goes from one point to
the next"""
show_data_points = True
show_data_values = True
"""Accumulates each data set. (i.e. Each point increased by sum of all
previous series at same point)."""
stacked = False
"Fill in the area under the plot"
area_fill = False
#override some defaults
top_align = top_font = right_align = right_font = True
stylesheet_names = Graph.stylesheet_names + ['plot.css']
def max_value(self):
data = map(itemgetter('data'), self.data)
if self.stacked:
data = self.get_cumulative_data()
return max(flatten(data))
def min_value(self):
if self.min_scale_value:
return self.min_scale_value
data = map(itemgetter('data'), self.data)
if self.stacked:
data = self.get_cumulative_data()
return min(flatten(data))
def get_cumulative_data():
"""Get the data as it will be charted. The first set will be
the actual first data set. The second will be the sum of the
first and the second, etc."""
sets = map(itemgetter('data'), self.data)
if not sets: return
sum = sets.pop(0)
yield sum
while sets:
sum = map(add, sets.pop(0))
yield sum
def get_x_labels(self):
return self.fields
def calculate_left_margin(self):
super(self.__class__, self).calculate_left_margin()
label_left = self.fields[0].length / 2 * self.font_size * 0.6
self.border_left = max(label_left, self.border_left)
def get_y_labels(self):
max_value = self.max_value()
min_value = self.min_value()
range = max_value - min_value
top_pad = (range / 20.0) or 10
scale_range = (max_value + top_pad) - min_value
scale_division = self.scale_divisions or (scale_range / 10.0)
if self.scale_integers:
scale_division = min(1, round(scale_division))
#maxvalue = maxvalue%scale_division == 0 ?
# maxvalue : maxvalue + scale_division
labels = tuple(float_range(min_value, max_value, scale_division))
return labels
def calc_coords(self, field, value, width = None, height = None):
if width is None: width = self.field_width
if height is None: height = self.field_height
coords = dict(
x = width * field,
y = self.graph_height - value * height,
)
return coords
def draw_data(self):
min_value = self.min_value()
field_height = self.graph_height - self.font_size*2*self.top_font
y_label_span = max(self.get_y_labels()) - min(self.get_y_labels())
field_height /= float(y_label_span)
field_width = self.field_width
#line = len(self.data)
prev_sum = [0]*len(self.fields)
cum_sum = [-min_value]*len(self.fields)
coord_format = lambda c: '%(x)s %(y)s' % c
for line_n, data in list(enumerate(self.data)).reversed():
apath = ''
if not self.stacked: cum_sum = [-min_value]*len(self.fields)
cum_sum = map(add, cum_sum, data['data'])
get_coords = lambda (i, val): self.calc_coords(i,
val,
field_width,
field_height)
coords = map(get_coords, enumerate(cum_sum))
paths = map(coord_format, coords)
line_path = ' '.join(paths)
if self.area_fill:
# to draw the area, we'll use the line above, followed by
# tracing the bottom from right to left
if self.stacked:
prev_sum_rev = list(enumerate(prev_sum)).reversed()
coords = map(get_coords, prev_sum_rev)
paths = map(coord_format, coords)
area_path = ' '.join(paths)
origin = paths[-1]
else:
area_path = "V#@graph_height"
origin = coord_format(get_coords(0,0))
d = ' '.join((
'M',
origin,
'L',
line_path,
area_path,
'Z'
))
etree.SubElement(self.graph, 'path', {
'class': 'fill%(line_n)s' % vars(),
'd': d,
})
# now draw the line itself
etree.SubElement(self.graph, 'path', {
'd': 'M0 '+self.graph_height+' L'+line_path,
'class': 'line%(line_n)s' % vars(),
})
if self.show_data_points or self.show_data_values:
for i, value in enumerate(cum_sum):
if self.show_data_points:
circle = etree.SubElement(
self.graph,
'circle',
{'class': 'dataPoint%(line_n)s' % vars()},
cx = str(field_width*i),
cy = str(self.graph_height - value*field_height),
r = '2.5',
)
self.make_datapoint_text(
field_width*i,
self.graph_height - value*field_height - 6,
value + min_value
)
prev_sum = list(cum_sum)