Python to generate nice looking SVG graph http://pygal.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

73 lines
2.1 KiB

from math import log, sqrt, pi
def erfinv(x, a=.147):
"""Approximation of the inverse error function
https://en.wikipedia.org/wiki/Error_function
#Approximation_with_elementary_functions
"""
lnx = log(1 - x * x)
part1 = (2 / (a * pi) + lnx / 2)
part2 = lnx / a
sgn = 1 if x > 0 else -1
return sgn * sqrt(sqrt(part1 * part1 - part2) - part1)
def norm_ppf(x):
if not 0 < x < 1:
raise ValueError("Can't compute the percentage point for value %d" % x)
return sqrt(2) * erfinv(2 * x - 1)
def ppf(x, n):
try:
from scipy import stats
except ImportError:
stats = None
if stats:
if n < 30:
return stats.t.ppf(x, n)
return stats.norm.ppf(x)
else:
if n < 30:
# TODO: implement power series:
# http://eprints.maths.ox.ac.uk/184/1/tdist.pdf
raise ImportError(
'You must have scipy installed to use t-student '
'when sample_size is below 30')
return norm_ppf(x)
# According to http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/
# BS704_Confidence_Intervals/BS704_Confidence_Intervals_print.html
def confidence_interval_continuous(
point_estimate, stddev, sample_size, confidence=.95, **kwargs):
"""Continuous confidence interval from sample size and standard error"""
alpha = ppf((confidence + 1) / 2, sample_size - 1)
margin = stddev / sqrt(sample_size)
return (point_estimate - alpha * margin, point_estimate + alpha * margin)
def confidence_interval_dichotomous(
point_estimate, sample_size, confidence=.95, bias=False,
percentage=True, **kwargs):
"""Dichotomous confidence interval from sample size and maybe a bias"""
alpha = ppf((confidence + 1) / 2, sample_size - 1)
p = point_estimate
if percentage:
p /= 100
margin = sqrt(p * (1 - p) / sample_size)
if bias:
margin += .5 / sample_size
if percentage:
margin *= 100
return (point_estimate - alpha * margin, point_estimate + alpha * margin)
def confidence_interval_manual(point_estimate, low, high):
return (low, high)