/*! dsa-modified-1.0.1.js (c) Recurity Labs GmbH, Kenji Urushimma | github.com/openpgpjs/openpgpjs/blob/master/LICENSE */ /* * dsa-modified.js - modified DSA class of OpenPGP-JS * * Copyright (c) 2011-2013 Recurity Labs GmbH (github.com/openpgpjs) * Kenji Urushima (kenji.urushima@gmail.com) * LICENSE * https://github.com/openpgpjs/openpgpjs/blob/master/LICENSE */ /** * @fileOverview * @name dsa-modified-1.0.js * @author Recurity Labs GmbH (github.com/openpgpjs) and Kenji Urushima (kenji.urushima@gmail.com) * @version 1.0.1 (2013-Oct-06) * @since jsrsasign 4.1.6 * @license LGPL License */ if (typeof KJUR == "undefined" || !KJUR) KJUR = {}; if (typeof KJUR.crypto == "undefined" || !KJUR.crypto) KJUR.crypto = {}; /** * class for DSA signing and verification * @name KJUR.crypto.DSA * @class class for DSA signing and verifcation * @description *
* CAUTION: Most of the case, you don't need to use this class. * Please use {@link KJUR.crypto.Signature} class instead. *
** This class was originally developped by Recurity Labs GmbH for OpenPGP JavaScript library. * (See {@link https://github.com/openpgpjs/openpgpjs/blob/master/src/ciphers/asymmetric/dsa.js}) *
*/ /* https://github.com/openpgpjs/openpgpjs/blob/master/src/ciphers/asymmetric/dsa.js */ KJUR.crypto.DSA = function() { this.p = null; this.q = null; this.g = null; this.y = null; this.x = null; this.type = "DSA"; //=========================== // PUBLIC METHODS //=========================== /** * set DSA private key by key specs * @name setPrivate * @memberOf KJUR.crypto.DSA * @function * @param {BigInteger} p prime P * @param {BigInteger} q sub prime Q * @param {BigInteger} g base G * @param {BigInteger} y public key Y * @param {BigInteger} x private key X * @since dsa-modified 1.0.0 */ this.setPrivate = function(p, q, g, y, x) { this.isPrivate = true; this.p = p; this.q = q; this.g = g; this.y = y; this.x = x; }; /** * set DSA public key by key specs * @name setPublic * @memberOf KJUR.crypto.DSA * @function * @param {BigInteger} p prime P * @param {BigInteger} q sub prime Q * @param {BigInteger} g base G * @param {BigInteger} y public key Y * @since dsa-modified 1.0.0 */ this.setPublic = function(p, q, g, y) { this.isPublic = true; this.p = p; this.q = q; this.g = g; this.y = y; this.x = null; }; /** * sign to hashed message by this DSA private key object * @name signWithMessageHash * @memberOf KJUR.crypto.DSA * @function * @param {String} sHashHex hexadecimal string of hashed message * @return {String} hexadecimal string of ASN.1 encoded DSA signature value * @since dsa-modified 1.0.0 */ this.signWithMessageHash = function(sHashHex) { var p = this.p; var q = this.q; var g = this.g; var y = this.y; var x = this.x; // 1. trim message hash var hashHex = sHashHex.substr(0, q.bitLength() / 4); var hash = new BigInteger(sHashHex, 16); var k = getRandomBigIntegerInRange(BigInteger.ONE.add(BigInteger.ONE), q.subtract(BigInteger.ONE)); var s1 = (g.modPow(k,p)).mod(q); var s2 = (k.modInverse(q).multiply(hash.add(x.multiply(s1)))).mod(q); var result = KJUR.asn1.ASN1Util.jsonToASN1HEX({ 'seq': [{'int': {'bigint': s1}}, {'int': {'bigint': s2}}] }); return result; }; /** * verify signature by this DSA public key object * @name verifyWithMessageHash * @memberOf KJUR.crypto.DSA * @function * @param {String} sHashHex hexadecimal string of hashed message * @param {String} hSigVal hexadecimal string of ASN.1 encoded DSA signature value * @return {Boolean} true if the signature is valid otherwise false. * @since dsa-modified 1.0.0 */ this.verifyWithMessageHash = function(sHashHex, hSigVal) { var p = this.p; var q = this.q; var g = this.g; var y = this.y; // 1. parse ASN.1 signature var s1s2 = this.parseASN1Signature(hSigVal); var s1 = s1s2[0]; var s2 = s1s2[1]; // 2. trim message hash var sHashHex = sHashHex.substr(0, q.bitLength() / 4); var hash = new BigInteger(sHashHex, 16); if (BigInteger.ZERO.compareTo(s1) > 0 || s1.compareTo(q) > 0 || BigInteger.ZERO.compareTo(s2) > 0 || s2.compareTo(q) > 0) { throw "invalid DSA signature"; } var w = s2.modInverse(q); var u1 = hash.multiply(w).mod(q); var u2 = s1.multiply(w).mod(q); var dopublic = g.modPow(u1,p).multiply(y.modPow(u2,p)).mod(p).mod(q); return dopublic.compareTo(s1) == 0; }; /** * parse hexadecimal ASN.1 DSA signature value * @name parseASN1Signature * @memberOf KJUR.crypto.DSA * @function * @param {String} hSigVal hexadecimal string of ASN.1 encoded DSA signature value * @return {Array} array [s1, s2] of DSA signature value. Both s1 and s2 are BigInteger. * @since dsa-modified 1.0.0 */ this.parseASN1Signature = function(hSigVal) { try { var s1 = new BigInteger(ASN1HEX.getVbyList(hSigVal, 0, [0], "02"), 16); var s2 = new BigInteger(ASN1HEX.getVbyList(hSigVal, 0, [1], "02"), 16); return [s1, s2]; } catch (ex) { throw "malformed DSA signature"; } } // s1 = ((g**s) mod p) mod q // s1 = ((s**-1)*(sha-1(m)+(s1*x) mod q) function sign(hashalgo, m, g, p, q, x) { // If the output size of the chosen hash is larger than the number of // bits of q, the hash result is truncated to fit by taking the number // of leftmost bits equal to the number of bits of q. This (possibly // truncated) hash function result is treated as a number and used // directly in the DSA signature algorithm. var hashHex = KJUR.crypto.Util.hashString(m, hashalgo.toLowerCase()); var hashHex = hashHex.substr(0, q.bitLength() / 4); var hash = new BigInteger(hashHex, 16); var k = getRandomBigIntegerInRange(BigInteger.ONE.add(BigInteger.ONE), q.subtract(BigInteger.ONE)); var s1 = (g.modPow(k,p)).mod(q); var s2 = (k.modInverse(q).multiply(hash.add(x.multiply(s1)))).mod(q); var result = new Array(); result[0] = s1; result[1] = s2; return result; } function select_hash_algorithm(q) { var usersetting = openpgp.config.config.prefer_hash_algorithm; /* * 1024-bit key, 160-bit q, SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 hash * 2048-bit key, 224-bit q, SHA-224, SHA-256, SHA-384, or SHA-512 hash * 2048-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash * 3072-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash */ switch (Math.round(q.bitLength() / 8)) { case 20: // 1024 bit if (usersetting != 2 && usersetting > 11 && usersetting != 10 && usersetting < 8) return 2; // prefer sha1 return usersetting; case 28: // 2048 bit if (usersetting > 11 && usersetting < 8) return 11; return usersetting; case 32: // 4096 bit // prefer sha224 if (usersetting > 10 && usersetting < 8) return 8; // prefer sha256 return usersetting; default: util.print_debug("DSA select hash algorithm: returning null for an unknown length of q"); return null; } } this.select_hash_algorithm = select_hash_algorithm; function verify(hashalgo, s1,s2,m,p,q,g,y) { var hashHex = KJUR.crypto.Util.hashString(m, hashalgo.toLowerCase()); var hashHex = hashHex.substr(0, q.bitLength() / 4); var hash = new BigInteger(hashHex, 16); if (BigInteger.ZERO.compareTo(s1) > 0 || s1.compareTo(q) > 0 || BigInteger.ZERO.compareTo(s2) > 0 || s2.compareTo(q) > 0) { util.print_error("invalid DSA Signature"); return null; } var w = s2.modInverse(q); var u1 = hash.multiply(w).mod(q); var u2 = s1.multiply(w).mod(q); var dopublic = g.modPow(u1,p).multiply(y.modPow(u2,p)).mod(p).mod(q); return dopublic.compareTo(s1) == 0; } /* * unused code. This can be used as a start to write a key generator * function. */ function generateKey(bitcount) { var qi = new BigInteger(bitcount, primeCenterie); var pi = generateP(q, 512); var gi = generateG(p, q, bitcount); var xi; do { xi = new BigInteger(q.bitCount(), rand); } while (x.compareTo(BigInteger.ZERO) != 1 && x.compareTo(q) != -1); var yi = g.modPow(x, p); return {x: xi, q: qi, p: pi, g: gi, y: yi}; } function generateP(q, bitlength, randomfn) { if (bitlength % 64 != 0) { return false; } var pTemp; var pTemp2; do { pTemp = randomfn(bitcount, true); pTemp2 = pTemp.subtract(BigInteger.ONE); pTemp = pTemp.subtract(pTemp2.remainder(q)); } while (!pTemp.isProbablePrime(primeCenterie) || pTemp.bitLength() != l); return pTemp; } function generateG(p, q, bitlength, randomfn) { var aux = p.subtract(BigInteger.ONE); var pow = aux.divide(q); var gTemp; do { gTemp = randomfn(bitlength); } while (gTemp.compareTo(aux) != -1 && gTemp.compareTo(BigInteger.ONE) != 1); return gTemp.modPow(pow, p); } function generateK(q, bitlength, randomfn) { var tempK; do { tempK = randomfn(bitlength, false); } while (tempK.compareTo(q) != -1 && tempK.compareTo(BigInteger.ZERO) != 1); return tempK; } function generateR(q,p) { k = generateK(q); var r = g.modPow(k, p).mod(q); return r; } function generateS(hashfn,k,r,m,q,x) { var hash = hashfn(m); s = (k.modInverse(q).multiply(hash.add(x.multiply(r)))).mod(q); return s; } this.sign = sign; this.verify = verify; // this.generate = generateKey; // // METHODS FROM // https://github.com/openpgpjs/openpgpjs/blob/master/src/ciphers/openpgp.crypto.js // function getRandomBigIntegerInRange(min, max) { if (max.compareTo(min) <= 0) return; var range = max.subtract(min); var r = getRandomBigInteger(range.bitLength()); while (r > range) { r = getRandomBigInteger(range.bitLength()); } return min.add(r); } function getRandomBigInteger(bits) { if (bits < 0) return null; var numBytes = Math.floor((bits+7)/8); var randomBits = getRandomBytes(numBytes); if (bits % 8 > 0) { randomBits = String.fromCharCode((Math.pow(2,bits % 8)-1) & randomBits.charCodeAt(0)) + randomBits.substring(1); } return new BigInteger(hexstrdump(randomBits), 16); } function getRandomBytes(length) { var result = ''; for (var i = 0; i < length; i++) { result += String.fromCharCode(getSecureRandomOctet()); } return result; } function getSecureRandomOctet() { var buf = new Uint32Array(1); window.crypto.getRandomValues(buf); return buf[0] & 0xFF; } // https://github.com/openpgpjs/openpgpjs/blob/master/src/util/util.js function hexstrdump(str) { if (str == null) return ""; var r=[]; var e=str.length; var c=0; var h; while(c