/*! ecdsa-modified-1.0.4.js (c) Stephan Thomas, Kenji Urushima | github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE
*/
/*
* ecdsa-modified.js - modified Bitcoin.ECDSA class
*
* Copyright (c) 2013 Stefan Thomas (github.com/justmoon)
* Kenji Urushima (kenji.urushima@gmail.com)
* LICENSE
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE
*/
/**
* @fileOverview
* @name ecdsa-modified-1.0.js
* @author Stefan Thomas (github.com/justmoon) and Kenji Urushima (kenji.urushima@gmail.com)
* @version 1.0.4 (2013-Oct-06)
* @since jsrsasign 4.0
* @license MIT License
*/
if (typeof KJUR == "undefined" || !KJUR) KJUR = {};
if (typeof KJUR.crypto == "undefined" || !KJUR.crypto) KJUR.crypto = {};
/**
* class for EC key generation, ECDSA signing and verifcation
* @name KJUR.crypto.ECDSA
* @class class for EC key generation, ECDSA signing and verifcation
* @description
*
* CAUTION: Most of the case, you don't need to use this class except
* for generating an EC key pair. Please use {@link KJUR.crypto.Signature} class instead.
*
*
* This class was originally developped by Stefan Thomas for Bitcoin JavaScript library.
* (See {@link https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/src/ecdsa.js})
* Currently this class supports following named curves and their aliases.
*
* - secp256r1, NIST P-256, P-256, prime256v1 (*)
* - secp256k1 (*)
* - secp384r1, NIST P-384, P-384 (*)
*
*
*/
KJUR.crypto.ECDSA = function(params) {
var curveName = "secp256r1"; // curve name default
var ecparams = null;
var prvKeyHex = null;
var pubKeyHex = null;
var rng = new SecureRandom();
var P_OVER_FOUR = null;
this.type = "EC";
function implShamirsTrick(P, k, Q, l) {
var m = Math.max(k.bitLength(), l.bitLength());
var Z = P.add2D(Q);
var R = P.curve.getInfinity();
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D();
R.z = BigInteger.ONE;
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z);
} else {
R = R.add2D(P);
}
} else {
if (l.testBit(i)) {
R = R.add2D(Q);
}
}
}
return R;
};
//===========================
// PUBLIC METHODS
//===========================
this.getBigRandom = function (limit) {
return new BigInteger(limit.bitLength(), rng)
.mod(limit.subtract(BigInteger.ONE))
.add(BigInteger.ONE)
;
};
this.setNamedCurve = function(curveName) {
this.ecparams = KJUR.crypto.ECParameterDB.getByName(curveName);
this.prvKeyHex = null;
this.pubKeyHex = null;
this.curveName = curveName;
}
this.setPrivateKeyHex = function(prvKeyHex) {
this.isPrivate = true;
this.prvKeyHex = prvKeyHex;
}
this.setPublicKeyHex = function(pubKeyHex) {
this.isPublic = true;
this.pubKeyHex = pubKeyHex;
}
/**
* generate a EC key pair
* @name generateKeyPairHex
* @memberOf KJUR.crypto.ECDSA
* @function
* @return {Array} associative array of hexadecimal string of private and public key
* @since ecdsa-modified 1.0.1
* @example
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
* var keypair = ec.generateKeyPairHex();
* var pubhex = keypair.ecpubhex; // hexadecimal string of EC private key (=d)
* var prvhex = keypair.ecprvhex; // hexadecimal string of EC public key
*/
this.generateKeyPairHex = function() {
var biN = this.ecparams['n'];
var biPrv = this.getBigRandom(biN);
var epPub = this.ecparams['G'].multiply(biPrv);
var biX = epPub.getX().toBigInteger();
var biY = epPub.getY().toBigInteger();
var charlen = this.ecparams['keylen'] / 4;
var hPrv = ("0000000000" + biPrv.toString(16)).slice(- charlen);
var hX = ("0000000000" + biX.toString(16)).slice(- charlen);
var hY = ("0000000000" + biY.toString(16)).slice(- charlen);
var hPub = "04" + hX + hY;
this.setPrivateKeyHex(hPrv);
this.setPublicKeyHex(hPub);
return {'ecprvhex': hPrv, 'ecpubhex': hPub};
};
this.signWithMessageHash = function(hashHex) {
return this.signHex(hashHex, this.prvKeyHex);
};
/**
* signing to message hash
* @name signHex
* @memberOf KJUR.crypto.ECDSA
* @function
* @param {String} hashHex hexadecimal string of hash value of signing message
* @param {String} privHex hexadecimal string of EC private key
* @return {String} hexadecimal string of ECDSA signature
* @since ecdsa-modified 1.0.1
* @example
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
* var sigValue = ec.signHex(hash, prvKey);
*/
this.signHex = function (hashHex, privHex) {
var d = new BigInteger(privHex, 16);
var n = this.ecparams['n'];
var e = new BigInteger(hashHex, 16);
do {
var k = this.getBigRandom(n);
var G = this.ecparams['G'];
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(r, s);
};
this.sign = function (hash, priv) {
var d = priv;
var n = this.ecparams['n'];
var e = BigInteger.fromByteArrayUnsigned(hash);
do {
var k = this.getBigRandom(n);
var G = this.ecparams['G'];
var Q = G.multiply(k);
var r = Q.getX().toBigInteger().mod(n);
} while (r.compareTo(BigInteger.ZERO) <= 0);
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
return this.serializeSig(r, s);
};
this.verifyWithMessageHash = function(hashHex, sigHex) {
return this.verifyHex(hashHex, sigHex, this.pubKeyHex);
};
/**
* verifying signature with message hash and public key
* @name verifyHex
* @memberOf KJUR.crypto.ECDSA
* @function
* @param {String} hashHex hexadecimal string of hash value of signing message
* @param {String} sigHex hexadecimal string of signature value
* @param {String} pubkeyHex hexadecimal string of public key
* @return {Boolean} true if the signature is valid, otherwise false
* @since ecdsa-modified 1.0.1
* @example
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
* var result = ec.verifyHex(msgHashHex, sigHex, pubkeyHex);
*/
this.verifyHex = function(hashHex, sigHex, pubkeyHex) {
var r,s;
var obj = KJUR.crypto.ECDSA.parseSigHex(sigHex);
r = obj.r;
s = obj.s;
var Q;
Q = ECPointFp.decodeFromHex(this.ecparams['curve'], pubkeyHex);
var e = new BigInteger(hashHex, 16);
return this.verifyRaw(e, r, s, Q);
};
this.verify = function (hash, sig, pubkey) {
var r,s;
if (Bitcoin.Util.isArray(sig)) {
var obj = this.parseSig(sig);
r = obj.r;
s = obj.s;
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r;
s = sig.s;
} else {
throw "Invalid value for signature";
}
var Q;
if (pubkey instanceof ECPointFp) {
Q = pubkey;
} else if (Bitcoin.Util.isArray(pubkey)) {
Q = ECPointFp.decodeFrom(this.ecparams['curve'], pubkey);
} else {
throw "Invalid format for pubkey value, must be byte array or ECPointFp";
}
var e = BigInteger.fromByteArrayUnsigned(hash);
return this.verifyRaw(e, r, s, Q);
};
this.verifyRaw = function (e, r, s, Q) {
var n = this.ecparams['n'];
var G = this.ecparams['G'];
if (r.compareTo(BigInteger.ONE) < 0 ||
r.compareTo(n) >= 0)
return false;
if (s.compareTo(BigInteger.ONE) < 0 ||
s.compareTo(n) >= 0)
return false;
var c = s.modInverse(n);
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2);
var point = G.multiply(u1).add(Q.multiply(u2));
var v = point.getX().toBigInteger().mod(n);
return v.equals(r);
};
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
this.serializeSig = function (r, s) {
var rBa = r.toByteArraySigned();
var sBa = s.toByteArraySigned();
var sequence = [];
sequence.push(0x02); // INTEGER
sequence.push(rBa.length);
sequence = sequence.concat(rBa);
sequence.push(0x02); // INTEGER
sequence.push(sBa.length);
sequence = sequence.concat(sBa);
sequence.unshift(sequence.length);
sequence.unshift(0x30); // SEQUENCE
return sequence;
};
/**
* Parses a byte array containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
this.parseSig = function (sig) {
var cursor;
if (sig[0] != 0x30)
throw new Error("Signature not a valid DERSequence");
cursor = 2;
if (sig[cursor] != 0x02)
throw new Error("First element in signature must be a DERInteger");;
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
if (sig[cursor] != 0x02)
throw new Error("Second element in signature must be a DERInteger");
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
cursor += 2+sig[cursor+1];
//if (cursor != sig.length)
// throw new Error("Extra bytes in signature");
var r = BigInteger.fromByteArrayUnsigned(rBa);
var s = BigInteger.fromByteArrayUnsigned(sBa);
return {r: r, s: s};
};
this.parseSigCompact = function (sig) {
if (sig.length !== 65) {
throw "Signature has the wrong length";
}
// Signature is prefixed with a type byte storing three bits of
// information.
var i = sig[0] - 27;
if (i < 0 || i > 7) {
throw "Invalid signature type";
}
var n = this.ecparams['n'];
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
return {r: r, s: s, i: i};
};
/*
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
/*
recoverPubKey: function (r, s, hash, i) {
// The recovery parameter i has two bits.
i = i & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var isYEven = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
var n = this.ecparams['n'];
var G = this.ecparams['G'];
var curve = this.ecparams['curve'];
var p = curve.getQ();
var a = curve.getA().toBigInteger();
var b = curve.getB().toBigInteger();
// We precalculate (p + 1) / 4 where p is if the field order
if (!P_OVER_FOUR) {
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
}
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r;
// 1.3 Convert x to point
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
var beta = alpha.modPow(P_OVER_FOUR, p);
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
// If beta is even, but y isn't or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
// 1.4 Check that nR is at infinity
var R = new ECPointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y));
R.validate();
// 1.5 Compute e from M
var e = BigInteger.fromByteArrayUnsigned(hash);
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n);
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
Q.validate();
if (!this.verifyRaw(e, r, s, Q)) {
throw "Pubkey recovery unsuccessful";
}
var pubKey = new Bitcoin.ECKey();
pubKey.pub = Q;
return pubKey;
},
*/
/*
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
/*
calcPubkeyRecoveryParam: function (address, r, s, hash) {
for (var i = 0; i < 4; i++) {
try {
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
if (pubkey.getBitcoinAddress().toString() == address) {
return i;
}
} catch (e) {}
}
throw "Unable to find valid recovery factor";
}
*/
if (params !== undefined) {
if (params['curve'] !== undefined) {
this.curveName = params['curve'];
}
}
if (this.curveName === undefined) this.curveName = curveName;
this.setNamedCurve(this.curveName);
if (params !== undefined) {
if (params['prv'] !== undefined) this.setPrivateKeyHex(params['prv']);
if (params['pub'] !== undefined) this.setPublicKeyHex(params['pub']);
}
};
/**
* parse ASN.1 DER encoded ECDSA signature
* @name parseSigHex
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {String} sigHex hexadecimal string of ECDSA signature value
* @return {Array} associative array of signature field r and s of BigInteger
* @since ecdsa-modified 1.0.1
* @example
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
* var sig = ec.parseSigHex('30...');
* var biR = sig.r; // BigInteger object for 'r' field of signature.
* var biS = sig.s; // BigInteger object for 's' field of signature.
*/
KJUR.crypto.ECDSA.parseSigHex = function(sigHex) {
var p = KJUR.crypto.ECDSA.parseSigHexInHexRS(sigHex);
var biR = new BigInteger(p.r, 16);
var biS = new BigInteger(p.s, 16);
return {'r': biR, 's': biS};
};
/**
* parse ASN.1 DER encoded ECDSA signature
* @name parseSigHexInHexRS
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {String} sigHex hexadecimal string of ECDSA signature value
* @return {Array} associative array of signature field r and s in hexadecimal
* @since ecdsa-modified 1.0.3
* @example
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
* var sig = ec.parseSigHexInHexRS('30...');
* var hR = sig.r; // hexadecimal string for 'r' field of signature.
* var hS = sig.s; // hexadecimal string for 's' field of signature.
*/
KJUR.crypto.ECDSA.parseSigHexInHexRS = function(sigHex) {
// 1. ASN.1 Sequence Check
if (sigHex.substr(0, 2) != "30")
throw "signature is not a ASN.1 sequence";
// 2. Items of ASN.1 Sequence Check
var a = ASN1HEX.getPosArrayOfChildren_AtObj(sigHex, 0);
if (a.length != 2)
throw "number of signature ASN.1 sequence elements seem wrong";
// 3. Integer check
var iTLV1 = a[0];
var iTLV2 = a[1];
if (sigHex.substr(iTLV1, 2) != "02")
throw "1st item of sequene of signature is not ASN.1 integer";
if (sigHex.substr(iTLV2, 2) != "02")
throw "2nd item of sequene of signature is not ASN.1 integer";
// 4. getting value
var hR = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV1);
var hS = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV2);
return {'r': hR, 's': hS};
};
/**
* convert hexadecimal ASN.1 encoded signature to concatinated signature
* @name asn1SigToConcatSig
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {String} asn1Hex hexadecimal string of ASN.1 encoded ECDSA signature value
* @return {String} r-s concatinated format of ECDSA signature value
* @since ecdsa-modified 1.0.3
*/
KJUR.crypto.ECDSA.asn1SigToConcatSig = function(asn1Sig) {
var pSig = KJUR.crypto.ECDSA.parseSigHexInHexRS(asn1Sig);
var hR = pSig.r;
var hS = pSig.s;
if (hR.substr(0, 2) == "00" && (((hR.length / 2) * 8) % (16 * 8)) == 8)
hR = hR.substr(2);
if (hS.substr(0, 2) == "00" && (((hS.length / 2) * 8) % (16 * 8)) == 8)
hS = hS.substr(2);
if ((((hR.length / 2) * 8) % (16 * 8)) != 0)
throw "unknown ECDSA sig r length error";
if ((((hS.length / 2) * 8) % (16 * 8)) != 0)
throw "unknown ECDSA sig s length error";
return hR + hS;
};
/**
* convert hexadecimal concatinated signature to ASN.1 encoded signature
* @name concatSigToASN1Sig
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {String} concatSig r-s concatinated format of ECDSA signature value
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
* @since ecdsa-modified 1.0.3
*/
KJUR.crypto.ECDSA.concatSigToASN1Sig = function(concatSig) {
if ((((concatSig.length / 2) * 8) % (16 * 8)) != 0)
throw "unknown ECDSA concatinated r-s sig length error";
var hR = concatSig.substr(0, concatSig.length / 2);
var hS = concatSig.substr(concatSig.length / 2);
return KJUR.crypto.ECDSA.hexRSSigToASN1Sig(hR, hS);
};
/**
* convert hexadecimal R and S value of signature to ASN.1 encoded signature
* @name hexRSSigToASN1Sig
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {String} hR hexadecimal string of R field of ECDSA signature value
* @param {String} hS hexadecimal string of S field of ECDSA signature value
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
* @since ecdsa-modified 1.0.3
*/
KJUR.crypto.ECDSA.hexRSSigToASN1Sig = function(hR, hS) {
var biR = new BigInteger(hR, 16);
var biS = new BigInteger(hS, 16);
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(biR, biS);
};
/**
* convert R and S BigInteger object of signature to ASN.1 encoded signature
* @name biRSSigToASN1Sig
* @memberOf KJUR.crypto.ECDSA
* @function
* @static
* @param {BigInteger} biR BigInteger object of R field of ECDSA signature value
* @param {BigInteger} biS BIgInteger object of S field of ECDSA signature value
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
* @since ecdsa-modified 1.0.3
*/
KJUR.crypto.ECDSA.biRSSigToASN1Sig = function(biR, biS) {
var derR = new KJUR.asn1.DERInteger({'bigint': biR});
var derS = new KJUR.asn1.DERInteger({'bigint': biS});
var derSeq = new KJUR.asn1.DERSequence({'array': [derR, derS]});
return derSeq.getEncodedHex();
};