You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
8.5 KiB
226 lines
8.5 KiB
# Copyright 2015 Paul Balanca. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
# ============================================================================== |
|
"""Converts Pascal VOC data to TFRecords file format with Example protos. |
|
|
|
The raw Pascal VOC data set is expected to reside in JPEG files located in the |
|
directory 'JPEGImages'. Similarly, bounding box annotations are supposed to be |
|
stored in the 'Annotation directory' |
|
|
|
This TensorFlow script converts the training and evaluation data into |
|
a sharded data set consisting of 1024 and 128 TFRecord files, respectively. |
|
|
|
Each validation TFRecord file contains ~500 records. Each training TFREcord |
|
file contains ~1000 records. Each record within the TFRecord file is a |
|
serialized Example proto. The Example proto contains the following fields: |
|
|
|
image/encoded: string containing JPEG encoded image in RGB colorspace |
|
image/height: integer, image height in pixels |
|
image/width: integer, image width in pixels |
|
image/channels: integer, specifying the number of channels, always 3 |
|
image/format: string, specifying the format, always'JPEG' |
|
|
|
|
|
image/object/bbox/xmin: list of float specifying the 0+ human annotated |
|
bounding boxes |
|
image/object/bbox/xmax: list of float specifying the 0+ human annotated |
|
bounding boxes |
|
image/object/bbox/ymin: list of float specifying the 0+ human annotated |
|
bounding boxes |
|
image/object/bbox/ymax: list of float specifying the 0+ human annotated |
|
bounding boxes |
|
image/object/bbox/label: list of integer specifying the classification index. |
|
image/object/bbox/label_text: list of string descriptions. |
|
|
|
Note that the length of xmin is identical to the length of xmax, ymin and ymax |
|
for each example. |
|
""" |
|
import os |
|
import sys |
|
import random |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
import xml.etree.ElementTree as ET |
|
|
|
from datasets.dataset_utils import int64_feature, float_feature, bytes_feature |
|
from datasets.pascalvoc_common import VOC_LABELS |
|
|
|
# Original dataset organisation. |
|
DIRECTORY_ANNOTATIONS = 'Annotations/' |
|
DIRECTORY_IMAGES = 'JPEGImages/' |
|
|
|
# TFRecords convertion parameters. |
|
RANDOM_SEED = 4242 |
|
SAMPLES_PER_FILES = 200 |
|
|
|
|
|
def _process_image(directory, name): |
|
"""Process a image and annotation file. |
|
|
|
Args: |
|
filename: string, path to an image file e.g., '/path/to/example.JPG'. |
|
coder: instance of ImageCoder to provide TensorFlow image coding utils. |
|
Returns: |
|
image_buffer: string, JPEG encoding of RGB image. |
|
height: integer, image height in pixels. |
|
width: integer, image width in pixels. |
|
""" |
|
# Read the image file. |
|
filename = os.path.join(directory, DIRECTORY_IMAGES, f'{name}.jpg') |
|
image_data = tf.gfile.FastGFile(filename, 'rb').read() |
|
|
|
# Read the XML annotation file. |
|
filename = os.path.join(directory, DIRECTORY_ANNOTATIONS, name + '.xml') |
|
tree = ET.parse(filename) |
|
root = tree.getroot() |
|
|
|
# Image shape. |
|
size = root.find('size') |
|
shape = [int(size.find('height').text), |
|
int(size.find('width').text), |
|
int(size.find('depth').text)] |
|
# Find annotations. |
|
bboxes = [] |
|
labels = [] |
|
labels_text = [] |
|
difficult = [] |
|
truncated = [] |
|
for obj in root.findall('object'): |
|
label = obj.find('name').text |
|
labels.append(int(VOC_LABELS[label][0])) |
|
labels_text.append(label.encode('ascii')) |
|
|
|
if obj.find('difficult'): |
|
difficult.append(int(obj.find('difficult').text)) |
|
else: |
|
difficult.append(0) |
|
if obj.find('truncated'): |
|
truncated.append(int(obj.find('truncated').text)) |
|
else: |
|
truncated.append(0) |
|
|
|
bbox = obj.find('bndbox') |
|
bboxes.append((float(bbox.find('ymin').text) / shape[0], |
|
float(bbox.find('xmin').text) / shape[1], |
|
float(bbox.find('ymax').text) / shape[0], |
|
float(bbox.find('xmax').text) / shape[1] |
|
)) |
|
return image_data, shape, bboxes, labels, labels_text, difficult, truncated |
|
|
|
|
|
def _convert_to_example(image_data, labels, labels_text, bboxes, shape, |
|
difficult, truncated): |
|
"""Build an Example proto for an image example. |
|
|
|
Args: |
|
image_data: string, JPEG encoding of RGB image; |
|
labels: list of integers, identifier for the ground truth; |
|
labels_text: list of strings, human-readable labels; |
|
bboxes: list of bounding boxes; each box is a list of integers; |
|
specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong |
|
to the same label as the image label. |
|
shape: 3 integers, image shapes in pixels. |
|
Returns: |
|
Example proto |
|
""" |
|
xmin = [] |
|
ymin = [] |
|
xmax = [] |
|
ymax = [] |
|
for b in bboxes: |
|
assert len(b) == 4 |
|
# pylint: disable=expression-not-assigned |
|
[l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)] |
|
# pylint: enable=expression-not-assigned |
|
|
|
image_format = b'JPEG' |
|
example = tf.train.Example(features=tf.train.Features(feature={ |
|
'image/height': int64_feature(shape[0]), |
|
'image/width': int64_feature(shape[1]), |
|
'image/channels': int64_feature(shape[2]), |
|
'image/shape': int64_feature(shape), |
|
'image/object/bbox/xmin': float_feature(xmin), |
|
'image/object/bbox/xmax': float_feature(xmax), |
|
'image/object/bbox/ymin': float_feature(ymin), |
|
'image/object/bbox/ymax': float_feature(ymax), |
|
'image/object/bbox/label': int64_feature(labels), |
|
'image/object/bbox/label_text': bytes_feature(labels_text), |
|
'image/object/bbox/difficult': int64_feature(difficult), |
|
'image/object/bbox/truncated': int64_feature(truncated), |
|
'image/format': bytes_feature(image_format), |
|
'image/encoded': bytes_feature(image_data)})) |
|
return example |
|
|
|
|
|
def _add_to_tfrecord(dataset_dir, name, tfrecord_writer): |
|
"""Loads data from image and annotations files and add them to a TFRecord. |
|
|
|
Args: |
|
dataset_dir: Dataset directory; |
|
name: Image name to add to the TFRecord; |
|
tfrecord_writer: The TFRecord writer to use for writing. |
|
""" |
|
image_data, shape, bboxes, labels, labels_text, difficult, truncated = \ |
|
_process_image(dataset_dir, name) |
|
example = _convert_to_example(image_data, labels, labels_text, |
|
bboxes, shape, difficult, truncated) |
|
tfrecord_writer.write(example.SerializeToString()) |
|
|
|
|
|
def _get_output_filename(output_dir, name, idx): |
|
return '%s/%s_%03d.tfrecord' % (output_dir, name, idx) |
|
|
|
|
|
def run(dataset_dir, output_dir, name='voc_train', shuffling=False): |
|
"""Runs the conversion operation. |
|
|
|
Args: |
|
dataset_dir: The dataset directory where the dataset is stored. |
|
output_dir: Output directory. |
|
""" |
|
if not tf.gfile.Exists(dataset_dir): |
|
tf.gfile.MakeDirs(dataset_dir) |
|
|
|
# Dataset filenames, and shuffling. |
|
path = os.path.join(dataset_dir, DIRECTORY_ANNOTATIONS) |
|
filenames = sorted(os.listdir(path)) |
|
if shuffling: |
|
random.seed(RANDOM_SEED) |
|
random.shuffle(filenames) |
|
|
|
# Process dataset files. |
|
i = 0 |
|
fidx = 0 |
|
while i < len(filenames): |
|
# Open new TFRecord file. |
|
tf_filename = _get_output_filename(output_dir, name, fidx) |
|
with tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer: |
|
j = 0 |
|
while i < len(filenames) and j < SAMPLES_PER_FILES: |
|
sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames))) |
|
sys.stdout.flush() |
|
|
|
filename = filenames[i] |
|
img_name = filename[:-4] |
|
_add_to_tfrecord(dataset_dir, img_name, tfrecord_writer) |
|
i += 1 |
|
j += 1 |
|
fidx += 1 |
|
|
|
# Finally, write the labels file: |
|
# labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES)) |
|
# dataset_utils.write_label_file(labels_to_class_names, dataset_dir) |
|
print('\nFinished converting the Pascal VOC dataset!')
|
|
|