You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.0 KiB
168 lines
5.0 KiB
5 years ago
|
"""USAGE
|
||
|
python cv_detector.py \
|
||
|
--prototxt mobilenet_ssd/MobileNetSSD_deploy.prototxt \
|
||
|
--model mobilenet_ssd/MobileNetSSD_deploy.caffemodel --video ~/Desktop/5min.mp4
|
||
|
"""
|
||
|
# import the necessary packages
|
||
|
from imutils.video import FPS
|
||
|
import numpy as np
|
||
|
import argparse
|
||
|
import imutils
|
||
|
import dlib
|
||
|
import cv2
|
||
|
from PIL import Image
|
||
|
|
||
|
# construct the argument parser and parse the arguments
|
||
|
ap = argparse.ArgumentParser()
|
||
|
ap.add_argument("-p", "--prototxt", required=True,
|
||
|
help="path to Caffe 'deploy' prototxt file")
|
||
|
ap.add_argument("-m", "--model", required=True,
|
||
|
help="path to Caffe pre-trained model")
|
||
|
ap.add_argument("-v", "--video", required=True,
|
||
|
help="path to input video file")
|
||
|
ap.add_argument("-o", "--output", type=str,
|
||
|
help="path to optional output video file")
|
||
|
ap.add_argument("-c", "--confidence", type=float, default=0.2,
|
||
|
help="minimum probability to filter weak detections")
|
||
|
args = vars(ap.parse_args())
|
||
|
|
||
|
|
||
|
# initialize the list of class labels MobileNet SSD was trained to
|
||
|
# detect
|
||
|
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
||
|
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
||
|
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
||
|
"sofa", "train", "tvmonitor"]
|
||
|
|
||
|
# load our serialized model from disk
|
||
|
print("[INFO] loading model...")
|
||
|
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
|
||
|
|
||
|
|
||
|
# initialize the video stream and output video writer
|
||
|
print("[INFO] starting video stream...")
|
||
|
vs = cv2.VideoCapture(args["video"])
|
||
|
_fps = vs.get(cv2.CAP_PROP_FPS)
|
||
|
|
||
|
writer = None
|
||
|
|
||
|
|
||
|
# initialize the list of object trackers and corresponding class
|
||
|
# labels
|
||
|
# trackers = []
|
||
|
labels = []
|
||
|
# start the frames per second throughput estimator
|
||
|
fps = FPS().start()
|
||
|
frame_count = 0
|
||
|
|
||
|
# loop over frames from the video file stream
|
||
|
while True:
|
||
|
# grab the next frame from the video file
|
||
|
(grabbed, frame) = vs.read()
|
||
|
frame_count += 1
|
||
|
_duration = frame_count / _fps
|
||
|
|
||
|
# check to see if we have reached the end of the video file
|
||
|
if frame is None:
|
||
|
break
|
||
|
|
||
|
|
||
|
"""
|
||
|
ENTRANCE_1: from hospital
|
||
|
"""
|
||
|
|
||
|
# 45. 325 == 164, 509
|
||
|
|
||
|
|
||
|
|
||
|
cropped_frame = frame[325:509, 45:164]
|
||
|
# cropped_frame.save("test.jpg")
|
||
|
cv2.imwrite('test.jpg', cropped_frame)
|
||
|
frame = cropped_frame
|
||
|
|
||
|
|
||
|
# resize the frame for faster processing and then convert the
|
||
|
# frame from BGR to RGB ordering (dlib needs RGB ordering)
|
||
|
# frame = imutils.resize(frame, width=600)
|
||
|
# rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||
|
|
||
|
# grab the frame dimensions and convert the frame to a blob
|
||
|
(h, w) = frame.shape[:2]
|
||
|
blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
|
||
|
|
||
|
# pass the blob through the network and obtain the detections
|
||
|
# and predictions
|
||
|
net.setInput(blob)
|
||
|
detections = net.forward()
|
||
|
|
||
|
|
||
|
# loop over the detections
|
||
|
for i in np.arange(0, detections.shape[2]):
|
||
|
# extract the confidence (i.e., probability) associated
|
||
|
# with the prediction
|
||
|
confidence = detections[0, 0, i, 2]
|
||
|
|
||
|
|
||
|
# filter out weak detections by requiring a minimum
|
||
|
# confidence
|
||
|
if confidence > args["confidence"]:
|
||
|
# extract the index of the class label from the
|
||
|
# detections list
|
||
|
idx = int(detections[0, 0, i, 1])
|
||
|
label = CLASSES[idx]
|
||
|
|
||
|
DROP = ["diningtable", "chair", "aeroplane"]
|
||
|
if label in DROP:
|
||
|
continue
|
||
|
# if the class label is not a person, ignore it
|
||
|
# if CLASSES[idx] != "person":
|
||
|
# continue
|
||
|
|
||
|
# compute the (x, y)-coordinates of the bounding box
|
||
|
# for the object
|
||
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
||
|
(startX, startY, endX, endY) = box.astype("int")
|
||
|
|
||
|
|
||
|
print(f"[{_duration:0.02f}] label: {label} (x,y) = ({startX}, {startY})")
|
||
|
|
||
|
# construct a dlib rectangle object from the bounding
|
||
|
# box coordinates and start the correlation tracker
|
||
|
# t = dlib.correlation_tracker()
|
||
|
# rect = dlib.rectangle(startX, startY, endX, endY)
|
||
|
# t.start_track(rgb, rect)
|
||
|
|
||
|
# update our set of trackers and corresponding class
|
||
|
# labels
|
||
|
labels.append(label)
|
||
|
|
||
|
# grab the corresponding class label for the detection
|
||
|
# and draw the bounding box
|
||
|
cv2.rectangle(frame, (startX, startY), (endX, endY),
|
||
|
(0, 255, 0), 2)
|
||
|
cv2.putText(frame, label, (startX, startY - 15),
|
||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
|
||
|
|
||
|
# show the output frame
|
||
|
cv2.imshow("Frame", frame)
|
||
|
key = cv2.waitKey(1) & 0xFF
|
||
|
|
||
|
# if the `q` key was pressed, break from the loop
|
||
|
if key == ord("q"):
|
||
|
break
|
||
|
|
||
|
# update the FPS counter
|
||
|
# fps.update()
|
||
|
|
||
|
|
||
|
|
||
|
# stop the timer and display FPS information
|
||
|
fps.stop()
|
||
|
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
|
||
|
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
|
||
|
|
||
|
|
||
|
# do a bit of cleanup
|
||
|
cv2.destroyAllWindows()
|
||
|
vs.release()
|