You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
3.6 KiB

5 years ago
# USAGE
# python multi_object_tracking.py --video videos/soccer_01.mp4 --tracker csrt
# python multi_object_tracking.py --video ~/Desktop/5min.mp4 --tracker csrt
# import the necessary packages
from imutils.video import VideoStream
import argparse
import imutils
import time
import cv2
import dlib
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", type=str,
help="path to input video file")
ap.add_argument("-t", "--tracker", type=str, default="kcf",
help="OpenCV object tracker type")
args = vars(ap.parse_args())
# initialize a dictionary that maps strings to their corresponding
# OpenCV object tracker implementations
OPENCV_OBJECT_TRACKERS = {
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
# initialize OpenCV's special multi-object tracker
# trackers = cv2.MultiTracker_create()
trackers = []
# if a video path was not supplied, grab the reference to the web cam
if not args.get("video", False):
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(1.0)
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
# loop over frames from the video stream
while True:
# grab the current frame, then handle if we are using a
# VideoStream or VideoCapture object
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
# check to see if we have reached the end of the stream
if frame is None:
break
# resize the frame (so we can process it faster)
# frame = imutils.resize(frame, width=600)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# grab the updated bounding box coordinates (if any) for each
# object that is being tracked
# (success, boxes) = trackers.update(frame)
# print('success', success)
# print('boxes', boxes)
for tk in trackers:
tk.update(frame_rgb)
pos = tk.get_position()
# unpack the position object
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
# loop over the bounding boxes and draw then on the frame
# for box in boxes:
# (x, y, w, h) = [int(v) for v in box]
# cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 's' key is selected, we are going to "select" a bounding
# box to track
if key == ord("s"):
# select the bounding box of the object we want to track (make
# sure you press ENTER or SPACE after selecting the ROI)
box = cv2.selectROI("Frame", frame, fromCenter=False,
showCrosshair=True)
print('select box: ', box)
(x,y,w,h) = box
startX = x
startY = y
endX = x + w
endY = y + h
print(startX, startY, endX, endY)
# create a new object tracker for the bounding box and add it
# to our multi-object tracker
# tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
# trackers.add(tracker, frame, box)
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(startX, startY, endX, endY)
print('rect', rect)
tracker.start_track(frame_rgb, rect)
trackers.append(tracker)
# if the `q` key was pressed, break from the loop
elif key == ord("q"):
break
# if we are using a webcam, release the pointer
if not args.get("video", False):
vs.stop()
# otherwise, release the file pointer
else:
vs.release()
# close all windows
cv2.destroyAllWindows()