|
|
|
# USAGE
|
|
|
|
# python multi_object_tracking_fast.py --prototxt mobilenet_ssd/MobileNetSSD_deploy.prototxt \
|
|
|
|
# --model mobilenet_ssd/MobileNetSSD_deploy.caffemodel --video race.mp4
|
|
|
|
|
|
|
|
# import the necessary packages
|
|
|
|
from imutils.video import FPS
|
|
|
|
import multiprocessing
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import imutils
|
|
|
|
import dlib
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
def start_tracker(box, label, rgb, inputQueue, outputQueue):
|
|
|
|
# construct a dlib rectangle object from the bounding box
|
|
|
|
# coordinates and then start the correlation tracker
|
|
|
|
t = dlib.correlation_tracker()
|
|
|
|
rect = dlib.rectangle(box[0], box[1], box[2], box[3])
|
|
|
|
t.start_track(rgb, rect)
|
|
|
|
|
|
|
|
# loop indefinitely -- this function will be called as a daemon
|
|
|
|
# process so we don't need to worry about joining it
|
|
|
|
while True:
|
|
|
|
# attempt to grab the next frame from the input queue
|
|
|
|
rgb = inputQueue.get()
|
|
|
|
|
|
|
|
# if there was an entry in our queue, process it
|
|
|
|
if rgb is not None:
|
|
|
|
# update the tracker and grab the position of the tracked
|
|
|
|
# object
|
|
|
|
t.update(rgb)
|
|
|
|
pos = t.get_position()
|
|
|
|
|
|
|
|
# unpack the position object
|
|
|
|
startX = int(pos.left())
|
|
|
|
startY = int(pos.top())
|
|
|
|
endX = int(pos.right())
|
|
|
|
endY = int(pos.bottom())
|
|
|
|
|
|
|
|
# add the label + bounding box coordinates to the output
|
|
|
|
# queue
|
|
|
|
outputQueue.put((label, (startX, startY, endX, endY)))
|
|
|
|
|
|
|
|
# construct the argument parser and parse the arguments
|
|
|
|
ap = argparse.ArgumentParser()
|
|
|
|
ap.add_argument("-p", "--prototxt", required=True,
|
|
|
|
help="path to Caffe 'deploy' prototxt file")
|
|
|
|
ap.add_argument("-m", "--model", required=True,
|
|
|
|
help="path to Caffe pre-trained model")
|
|
|
|
ap.add_argument("-v", "--video", required=True,
|
|
|
|
help="path to input video file")
|
|
|
|
ap.add_argument("-o", "--output", type=str,
|
|
|
|
help="path to optional output video file")
|
|
|
|
ap.add_argument("-c", "--confidence", type=float, default=0.2,
|
|
|
|
help="minimum probability to filter weak detections")
|
|
|
|
args = vars(ap.parse_args())
|
|
|
|
|
|
|
|
# initialize our list of queues -- both input queue and output queue
|
|
|
|
# for *every* object that we will be tracking
|
|
|
|
inputQueues = []
|
|
|
|
outputQueues = []
|
|
|
|
|
|
|
|
# initialize the list of class labels MobileNet SSD was trained to
|
|
|
|
# detect
|
|
|
|
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
|
|
|
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
|
|
|
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
|
|
|
"sofa", "train", "tvmonitor"]
|
|
|
|
|
|
|
|
# load our serialized model from disk
|
|
|
|
print("[INFO] loading model...")
|
|
|
|
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
|
|
|
|
|
|
|
|
# initialize the video stream and output video writer
|
|
|
|
print("[INFO] starting video stream...")
|
|
|
|
vs = cv2.VideoCapture(args["video"])
|
|
|
|
writer = None
|
|
|
|
|
|
|
|
# start the frames per second throughput estimator
|
|
|
|
fps = FPS().start()
|
|
|
|
|
|
|
|
# loop over frames from the video file stream
|
|
|
|
while True:
|
|
|
|
# grab the next frame from the video file
|
|
|
|
(grabbed, frame) = vs.read()
|
|
|
|
|
|
|
|
# check to see if we have reached the end of the video file
|
|
|
|
if frame is None:
|
|
|
|
break
|
|
|
|
|
|
|
|
# resize the frame for faster processing and then convert the
|
|
|
|
# frame from BGR to RGB ordering (dlib needs RGB ordering)
|
|
|
|
frame = imutils.resize(frame, width=600)
|
|
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
# if we are supposed to be writing a video to disk, initialize
|
|
|
|
# the writer
|
|
|
|
if args["output"] is not None and writer is None:
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
|
|
|
writer = cv2.VideoWriter(args["output"], fourcc, 30,
|
|
|
|
(frame.shape[1], frame.shape[0]), True)
|
|
|
|
|
|
|
|
# if our list of queues is empty then we know we have yet to
|
|
|
|
# create our first object tracker
|
|
|
|
if len(inputQueues) == 0:
|
|
|
|
# grab the frame dimensions and convert the frame to a blob
|
|
|
|
(h, w) = frame.shape[:2]
|
|
|
|
blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
|
|
|
|
|
|
|
|
# pass the blob through the network and obtain the detections
|
|
|
|
# and predictions
|
|
|
|
net.setInput(blob)
|
|
|
|
detections = net.forward()
|
|
|
|
|
|
|
|
# loop over the detections
|
|
|
|
for i in np.arange(0, detections.shape[2]):
|
|
|
|
# extract the confidence (i.e., probability) associated
|
|
|
|
# with the prediction
|
|
|
|
confidence = detections[0, 0, i, 2]
|
|
|
|
|
|
|
|
# filter out weak detections by requiring a minimum
|
|
|
|
# confidence
|
|
|
|
if confidence > args["confidence"]:
|
|
|
|
# extract the index of the class label from the
|
|
|
|
# detections list
|
|
|
|
idx = int(detections[0, 0, i, 1])
|
|
|
|
label = CLASSES[idx]
|
|
|
|
|
|
|
|
# if the class label is not a person, ignore it
|
|
|
|
if CLASSES[idx] != "person":
|
|
|
|
continue
|
|
|
|
|
|
|
|
# compute the (x, y)-coordinates of the bounding box
|
|
|
|
# for the object
|
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
|
|
|
(startX, startY, endX, endY) = box.astype("int")
|
|
|
|
bb = (startX, startY, endX, endY)
|
|
|
|
|
|
|
|
# create two brand new input and output queues,
|
|
|
|
# respectively
|
|
|
|
iq = multiprocessing.Queue()
|
|
|
|
oq = multiprocessing.Queue()
|
|
|
|
inputQueues.append(iq)
|
|
|
|
outputQueues.append(oq)
|
|
|
|
|
|
|
|
# spawn a daemon process for a new object tracker
|
|
|
|
p = multiprocessing.Process(
|
|
|
|
target=start_tracker,
|
|
|
|
args=(bb, label, rgb, iq, oq))
|
|
|
|
p.daemon = True
|
|
|
|
p.start()
|
|
|
|
|
|
|
|
# grab the corresponding class label for the detection
|
|
|
|
# and draw the bounding box
|
|
|
|
cv2.rectangle(frame, (startX, startY), (endX, endY),
|
|
|
|
(0, 255, 0), 2)
|
|
|
|
cv2.putText(frame, label, (startX, startY - 15),
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
# otherwise, we've already performed detection so let's track
|
|
|
|
# multiple objects
|
|
|
|
else:
|
|
|
|
# loop over each of our input ques and add the input RGB
|
|
|
|
# frame to it, enabling us to update each of the respective
|
|
|
|
# object trackers running in separate processes
|
|
|
|
for iq in inputQueues:
|
|
|
|
iq.put(rgb)
|
|
|
|
|
|
|
|
# loop over each of the output queues
|
|
|
|
for oq in outputQueues:
|
|
|
|
# grab the updated bounding box coordinates for the
|
|
|
|
# object -- the .get method is a blocking operation so
|
|
|
|
# this will pause our execution until the respective
|
|
|
|
# process finishes the tracking update
|
|
|
|
(label, (startX, startY, endX, endY)) = oq.get()
|
|
|
|
|
|
|
|
# draw the bounding box from the correlation object
|
|
|
|
# tracker
|
|
|
|
cv2.rectangle(frame, (startX, startY), (endX, endY),
|
|
|
|
(0, 255, 0), 2)
|
|
|
|
cv2.putText(frame, label, (startX, startY - 15),
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
# check to see if we should write the frame to disk
|
|
|
|
if writer is not None:
|
|
|
|
writer.write(frame)
|
|
|
|
|
|
|
|
# show the output frame
|
|
|
|
cv2.imshow("Frame", frame)
|
|
|
|
key = cv2.waitKey(1) & 0xFF
|
|
|
|
|
|
|
|
# if the `q` key was pressed, break from the loop
|
|
|
|
if key == ord("q"):
|
|
|
|
break
|
|
|
|
|
|
|
|
# update the FPS counter
|
|
|
|
fps.update()
|
|
|
|
|
|
|
|
# stop the timer and display FPS information
|
|
|
|
fps.stop()
|
|
|
|
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
|
|
|
|
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
|
|
|
|
|
|
|
|
# check to see if we need to release the video writer pointer
|
|
|
|
if writer is not None:
|
|
|
|
writer.release()
|
|
|
|
|
|
|
|
# do a bit of cleanup
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
vs.release()
|