|
|
|
"""USAGE
|
|
|
|
python examples/yolo_obj_detector.py \
|
|
|
|
-c ~/dev/obj-tracking/yolov3.cfg \
|
|
|
|
-w ~/dev/obj-tracking/yolov3.weights \
|
|
|
|
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \
|
|
|
|
-i ~/dev/obj-tracking/person.jpg
|
|
|
|
|
|
|
|
python examples/yolo_obj_detector.py \
|
|
|
|
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \
|
|
|
|
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \
|
|
|
|
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \
|
|
|
|
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg
|
|
|
|
"""
|
|
|
|
import cv2
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
ap = argparse.ArgumentParser()
|
|
|
|
ap.add_argument("-i", "--image", required=True, help="path to input image")
|
|
|
|
ap.add_argument("-c", "--config", required=True, help="path to yolo config file")
|
|
|
|
ap.add_argument(
|
|
|
|
"-w", "--weights", required=True, help="path to yolo pre-trained weights"
|
|
|
|
)
|
|
|
|
ap.add_argument(
|
|
|
|
"-cl", "--classes", required=True, help="path to text file containing class names"
|
|
|
|
)
|
|
|
|
args = ap.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def get_output_layers(net):
|
|
|
|
layer_names = net.getLayerNames()
|
|
|
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
|
return output_layers
|
|
|
|
|
|
|
|
|
|
|
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
|
|
|
|
label = str(classes[class_id])
|
|
|
|
color = COLORS[class_id]
|
|
|
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
|
|
|
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
|
|
|
|
|
image = cv2.imread(args.image)
|
|
|
|
|
|
|
|
Width = image.shape[1]
|
|
|
|
Height = image.shape[0]
|
|
|
|
scale = 0.00392
|
|
|
|
|
|
|
|
classes = None
|
|
|
|
|
|
|
|
with open(args.classes, "r") as f:
|
|
|
|
classes = [line.strip() for line in f.readlines()]
|
|
|
|
|
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
|
|
|
|
|
|
|
|
net = cv2.dnn.readNet(args.weights, args.config)
|
|
|
|
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
|
|
|
|
|
|
|
|
net.setInput(blob)
|
|
|
|
|
|
|
|
outs = net.forward(get_output_layers(net))
|
|
|
|
|
|
|
|
class_ids = []
|
|
|
|
confidences = []
|
|
|
|
boxes = []
|
|
|
|
conf_threshold = 0.5
|
|
|
|
nms_threshold = 0.4
|
|
|
|
|
|
|
|
|
|
|
|
for out in outs:
|
|
|
|
for detection in out:
|
|
|
|
scores = detection[5:]
|
|
|
|
class_id = np.argmax(scores)
|
|
|
|
confidence = scores[class_id]
|
|
|
|
if confidence > 0.5:
|
|
|
|
center_x = int(detection[0] * Width)
|
|
|
|
center_y = int(detection[1] * Height)
|
|
|
|
w = int(detection[2] * Width)
|
|
|
|
h = int(detection[3] * Height)
|
|
|
|
x = center_x - w / 2
|
|
|
|
y = center_y - h / 2
|
|
|
|
class_ids.append(class_id)
|
|
|
|
confidences.append(float(confidence))
|
|
|
|
boxes.append([x, y, w, h])
|
|
|
|
|
|
|
|
|
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
|
|
|
|
|
|
|
|
for i in indices:
|
|
|
|
i = i[0]
|
|
|
|
box = boxes[i]
|
|
|
|
x = box[0]
|
|
|
|
y = box[1]
|
|
|
|
w = box[2]
|
|
|
|
h = box[3]
|
|
|
|
draw_prediction(
|
|
|
|
image,
|
|
|
|
class_ids[i],
|
|
|
|
confidences[i],
|
|
|
|
round(x),
|
|
|
|
round(y),
|
|
|
|
round(x + w),
|
|
|
|
round(y + h),
|
|
|
|
)
|
|
|
|
|
|
|
|
cv2.imshow("object detection", image)
|
|
|
|
cv2.waitKey()
|
|
|
|
|
|
|
|
cv2.imwrite("object-detection.jpg", image)
|
|
|
|
cv2.destroyAllWindows()
|