"""USAGE python cv_detector.py \ --prototxt mobilenet_ssd/MobileNetSSD_deploy.prototxt \ --model mobilenet_ssd/MobileNetSSD_deploy.caffemodel --video ~/Desktop/5min.mp4 """ # import the necessary packages from imutils.video import FPS import numpy as np import argparse import imutils import dlib import cv2 from PIL import Image # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-v", "--video", required=True, help="path to input video file") ap.add_argument("-o", "--output", type=str, help="path to optional output video file") ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # initialize the list of class labels MobileNet SSD was trained to # detect CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # initialize the video stream and output video writer print("[INFO] starting video stream...") vs = cv2.VideoCapture(args["video"]) _fps = vs.get(cv2.CAP_PROP_FPS) writer = None # initialize the list of object trackers and corresponding class # labels # trackers = [] labels = [] # start the frames per second throughput estimator fps = FPS().start() frame_count = 0 # loop over frames from the video file stream while True: # grab the next frame from the video file (grabbed, frame) = vs.read() frame_count += 1 _duration = frame_count / _fps # check to see if we have reached the end of the video file if frame is None: break """ ENTRANCE_1: from hospital """ # 45. 325 == 164, 509 cropped_frame = frame[325:509, 45:164] # cropped_frame.save("test.jpg") cv2.imwrite('test.jpg', cropped_frame) frame = cropped_frame # resize the frame for faster processing and then convert the # frame from BGR to RGB ordering (dlib needs RGB ordering) # frame = imutils.resize(frame, width=600) # rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # grab the frame dimensions and convert the frame to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5) # pass the blob through the network and obtain the detections # and predictions net.setInput(blob) detections = net.forward() # loop over the detections for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated # with the prediction confidence = detections[0, 0, i, 2] # filter out weak detections by requiring a minimum # confidence if confidence > args["confidence"]: # extract the index of the class label from the # detections list idx = int(detections[0, 0, i, 1]) label = CLASSES[idx] DROP = ["diningtable", "chair", "aeroplane"] if label in DROP: continue # if the class label is not a person, ignore it # if CLASSES[idx] != "person": # continue # compute the (x, y)-coordinates of the bounding box # for the object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") print(f"[{_duration:0.02f}] label: {label} (x,y) = ({startX}, {startY})") # construct a dlib rectangle object from the bounding # box coordinates and start the correlation tracker # t = dlib.correlation_tracker() # rect = dlib.rectangle(startX, startY, endX, endY) # t.start_track(rgb, rect) # update our set of trackers and corresponding class # labels labels.append(label) # grab the corresponding class label for the detection # and draw the bounding box cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2) cv2.putText(frame, label, (startX, startY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # update the FPS counter # fps.update() # stop the timer and display FPS information fps.stop() print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) # do a bit of cleanup cv2.destroyAllWindows() vs.release()