"""USAGE python examples/yolo_obj_detector.py \ -c ~/dev/obj-tracking/yolov3.cfg \ -w ~/dev/obj-tracking/yolov3.weights \ -cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ -i ~/dev/obj-tracking/person.jpg python examples/yolo_obj_detector.py \ -c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ -w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ -cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ -i /media/sipp11/500BUP/handai_photos/test/6294.jpg """ import cv2 import argparse import numpy as np ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-c", "--config", required=True, help="path to yolo config file") ap.add_argument( "-w", "--weights", required=True, help="path to yolo pre-trained weights" ) ap.add_argument( "-cl", "--classes", required=True, help="path to text file containing class names" ) args = ap.parse_args() def get_output_layers(net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): label = str(classes[class_id]) color = COLORS[class_id] cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) image = cv2.imread(args.image) Width = image.shape[1] Height = image.shape[0] scale = 0.00392 classes = None with open(args.classes, "r") as f: classes = [line.strip() for line in f.readlines()] COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) net = cv2.dnn.readNet(args.weights, args.config) blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(get_output_layers(net)) class_ids = [] confidences = [] boxes = [] conf_threshold = 0.5 nms_threshold = 0.4 for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * Width) center_y = int(detection[1] * Height) w = int(detection[2] * Width) h = int(detection[3] * Height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) for i in indices: i = i[0] box = boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] draw_prediction( image, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h), ) cv2.imshow("object detection", image) cv2.waitKey() cv2.imwrite("object-detection.jpg", image) cv2.destroyAllWindows()