You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
5.0 KiB

"""USAGE
python cv_detector.py \
--prototxt mobilenet_ssd/MobileNetSSD_deploy.prototxt \
--model mobilenet_ssd/MobileNetSSD_deploy.caffemodel --video ~/Desktop/5min.mp4
"""
# import the necessary packages
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import dlib
import cv2
from PIL import Image
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-v", "--video", required=True,
help="path to input video file")
ap.add_argument("-o", "--output", type=str,
help="path to optional output video file")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream and output video writer
print("[INFO] starting video stream...")
vs = cv2.VideoCapture(args["video"])
_fps = vs.get(cv2.CAP_PROP_FPS)
writer = None
# initialize the list of object trackers and corresponding class
# labels
# trackers = []
labels = []
# start the frames per second throughput estimator
fps = FPS().start()
frame_count = 0
# loop over frames from the video file stream
while True:
# grab the next frame from the video file
(grabbed, frame) = vs.read()
frame_count += 1
_duration = frame_count / _fps
# check to see if we have reached the end of the video file
if frame is None:
break
"""
ENTRANCE_1: from hospital
"""
# 45. 325 == 164, 509
cropped_frame = frame[325:509, 45:164]
# cropped_frame.save("test.jpg")
cv2.imwrite('test.jpg', cropped_frame)
frame = cropped_frame
# resize the frame for faster processing and then convert the
# frame from BGR to RGB ordering (dlib needs RGB ordering)
# frame = imutils.resize(frame, width=600)
# rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# grab the frame dimensions and convert the frame to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
# pass the blob through the network and obtain the detections
# and predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated
# with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by requiring a minimum
# confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# detections list
idx = int(detections[0, 0, i, 1])
label = CLASSES[idx]
DROP = ["diningtable", "chair", "aeroplane"]
if label in DROP:
continue
# if the class label is not a person, ignore it
# if CLASSES[idx] != "person":
# continue
# compute the (x, y)-coordinates of the bounding box
# for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
print(f"[{_duration:0.02f}] label: {label} (x,y) = ({startX}, {startY})")
# construct a dlib rectangle object from the bounding
# box coordinates and start the correlation tracker
# t = dlib.correlation_tracker()
# rect = dlib.rectangle(startX, startY, endX, endY)
# t.start_track(rgb, rect)
# update our set of trackers and corresponding class
# labels
labels.append(label)
# grab the corresponding class label for the detection
# and draw the bounding box
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 255, 0), 2)
cv2.putText(frame, label, (startX, startY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
# fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
vs.release()