You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
2.9 KiB
109 lines
2.9 KiB
"""USAGE |
|
python examples/yolo_obj_detector.py \ |
|
-c ~/dev/obj-tracking/yolov3.cfg \ |
|
-w ~/dev/obj-tracking/yolov3.weights \ |
|
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
|
-i ~/dev/obj-tracking/person.jpg |
|
|
|
python examples/yolo_obj_detector.py \ |
|
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ |
|
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ |
|
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ |
|
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg |
|
""" |
|
import cv2 |
|
import argparse |
|
import numpy as np |
|
|
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-i", "--image", required=True, help="path to input image") |
|
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
|
ap.add_argument( |
|
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
|
) |
|
ap.add_argument( |
|
"-cl", "--classes", required=True, help="path to text file containing class names" |
|
) |
|
args = ap.parse_args() |
|
|
|
|
|
def get_output_layers(net): |
|
layer_names = net.getLayerNames() |
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
|
return output_layers |
|
|
|
|
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
|
label = str(classes[class_id]) |
|
color = COLORS[class_id] |
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
|
|
|
image = cv2.imread(args.image) |
|
|
|
Width = image.shape[1] |
|
Height = image.shape[0] |
|
scale = 0.00392 |
|
|
|
classes = None |
|
|
|
with open(args.classes, "r") as f: |
|
classes = [line.strip() for line in f.readlines()] |
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
|
|
|
net = cv2.dnn.readNet(args.weights, args.config) |
|
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) |
|
|
|
net.setInput(blob) |
|
|
|
outs = net.forward(get_output_layers(net)) |
|
|
|
class_ids = [] |
|
confidences = [] |
|
boxes = [] |
|
conf_threshold = 0.5 |
|
nms_threshold = 0.4 |
|
|
|
|
|
for out in outs: |
|
for detection in out: |
|
scores = detection[5:] |
|
class_id = np.argmax(scores) |
|
confidence = scores[class_id] |
|
if confidence > 0.5: |
|
center_x = int(detection[0] * Width) |
|
center_y = int(detection[1] * Height) |
|
w = int(detection[2] * Width) |
|
h = int(detection[3] * Height) |
|
x = center_x - w / 2 |
|
y = center_y - h / 2 |
|
class_ids.append(class_id) |
|
confidences.append(float(confidence)) |
|
boxes.append([x, y, w, h]) |
|
|
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
|
|
|
for i in indices: |
|
i = i[0] |
|
box = boxes[i] |
|
x = box[0] |
|
y = box[1] |
|
w = box[2] |
|
h = box[3] |
|
draw_prediction( |
|
image, |
|
class_ids[i], |
|
confidences[i], |
|
round(x), |
|
round(y), |
|
round(x + w), |
|
round(y + h), |
|
) |
|
|
|
cv2.imshow("object detection", image) |
|
cv2.waitKey() |
|
|
|
cv2.imwrite("object-detection.jpg", image) |
|
cv2.destroyAllWindows()
|
|
|