You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
4.3 KiB
162 lines
4.3 KiB
"""USAGE |
|
python yolo_vdo_obj_detector.py \ |
|
-c ~/syncthing/dropbox/handai/obj_tracking/mytrain.cfg \ |
|
-w ~/syncthing/dropbox/handai/obj_tracking/mytrain_final.weights \ |
|
-cl ~/syncthing/dropbox/handai/obj_tracking/mytrain.names \ |
|
-i ~/syncthing/dropbox/handai/data/5min.mp4 |
|
""" |
|
from imutils.video import FPS |
|
import cv2 |
|
import csv |
|
import argparse |
|
import numpy as np |
|
|
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-i", "--input", required=True, help="path to input vdo") |
|
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
|
ap.add_argument( |
|
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
|
) |
|
ap.add_argument( |
|
"-cl", "--classes", required=True, help="path to text file containing class names" |
|
) |
|
args = ap.parse_args() |
|
|
|
|
|
def get_output_layers(net): |
|
layer_names = net.getLayerNames() |
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
|
return output_layers |
|
|
|
|
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
|
label = str(classes[class_id]) |
|
color = COLORS[class_id] |
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
|
|
|
|
|
classes = None |
|
|
|
with open(args.classes, "r") as f: |
|
classes = [line.strip() for line in f.readlines()] |
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
|
|
|
net = cv2.dnn.readNet(args.weights, args.config) |
|
|
|
vs = cv2.VideoCapture(args.input) |
|
_fps = vs.get(cv2.CAP_PROP_FPS) |
|
Width = vs.get(cv2.CAP_PROP_FRAME_WIDTH) |
|
Height = vs.get(cv2.CAP_PROP_FRAME_HEIGHT) |
|
# Width = Height = None |
|
scale = 0.00392 |
|
print(f'{_fps} fps {Width}x{Height} px') |
|
|
|
writer = None |
|
|
|
|
|
# initialize the list of object trackers and corresponding class |
|
# labels |
|
# trackers = [] |
|
labels = [] |
|
# start the frames per second throughput estimator |
|
fps = FPS().start() |
|
frame_count = 0 |
|
|
|
f = open('yolo_output_txt.csv', 'wt') |
|
fieldnames = ['frame', 'what', 'x', 'y', 'w', 'h'] |
|
cf = csv.DictWriter(f, fieldnames=fieldnames) |
|
cf.writeheader() |
|
|
|
# loop over frames from the video file stream |
|
while True: |
|
# grab the next frame from the video file |
|
(grabbed, frame) = vs.read() |
|
frame_count += 1 |
|
_duration = frame_count / _fps |
|
|
|
# check to see if we have reached the end of the video file |
|
if frame is None: |
|
break |
|
|
|
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False) |
|
|
|
net.setInput(blob) |
|
|
|
outs = net.forward(get_output_layers(net)) |
|
|
|
class_ids = [] |
|
confidences = [] |
|
boxes = [] |
|
conf_threshold = 0.5 |
|
nms_threshold = 0.4 |
|
|
|
for out in outs: |
|
for detection in out: |
|
scores = detection[5:] |
|
class_id = np.argmax(scores) |
|
confidence = scores[class_id] |
|
if confidence > 0.5: |
|
center_x = int(detection[0] * Width) |
|
center_y = int(detection[1] * Height) |
|
w = int(detection[2] * Width) |
|
h = int(detection[3] * Height) |
|
x = center_x - w / 2 |
|
y = center_y - h / 2 |
|
class_ids.append(class_id) |
|
confidences.append(float(confidence)) |
|
boxes.append([x, y, w, h]) |
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
|
|
|
for i in indices: |
|
i = i[0] |
|
box = boxes[i] |
|
x = round(box[0]) |
|
y = round(box[1]) |
|
w = round(box[2]) |
|
h = round(box[3]) |
|
_cls_id = class_ids[i] |
|
_row = { |
|
'frame': frame_count, |
|
'what': str(classes[_cls_id]), |
|
'x': x, |
|
'y': y, |
|
'w': w, |
|
'h': h, |
|
} |
|
cf.writerow(_row) |
|
draw_prediction( |
|
frame, |
|
_cls_id, |
|
confidences[i], |
|
round(x), |
|
round(y), |
|
round(x + w), |
|
round(y + h), |
|
) |
|
|
|
# show the output frame |
|
cv2.imshow("Frame", frame) |
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
# if the `q` key was pressed, break from the loop |
|
if key == ord("q"): |
|
break |
|
|
|
# update the FPS counter |
|
# fps.update() |
|
|
|
|
|
# stop the timer and display FPS information |
|
fps.stop() |
|
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) |
|
print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) |
|
|
|
|
|
# do a bit of cleanup |
|
cv2.destroyAllWindows() |
|
vs.release() |
|
|
|
f.close() |