|
|
|
'''
|
|
|
|
Step 4
|
|
|
|
'''
|
|
|
|
# -*- coding:utf-8 -*-
|
|
|
|
#!/usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
from base import Lo, create_csv
|
|
|
|
import os
|
|
|
|
import csv
|
|
|
|
import sys
|
|
|
|
|
|
|
|
los = Lo()
|
|
|
|
|
|
|
|
xmodels = {
|
|
|
|
'IMSf': {}, 'IMSD': {}, 'IMHf': {}, 'IMHD': {}, 'IFSf': {}, 'IFSD': {},
|
|
|
|
'IFHf': {}, 'IFHD': {}, 'CMSf': {}, 'CMSD': {}, 'CMHf': {}, 'CMHD': {},
|
|
|
|
'CFSf': {}, 'CFSD': {}, 'CFHf': {}, 'CFHD': {}, 'PMSf': {}, 'PMSD': {},
|
|
|
|
'PMHf': {}, 'PMHD': {}, 'PFSf': {}, 'PFSD': {}, 'PFHf': {}, 'PFHD': {},
|
|
|
|
}
|
|
|
|
fs = ('Case1_LS.csv', 'Case1_Gender.csv', 'Case1_Level.csv', 'Case1_SciF.csv')
|
|
|
|
|
|
|
|
|
|
|
|
def get_match_all():
|
|
|
|
result = {}
|
|
|
|
fpath = os.path.join(os.getcwd(), 'build', 'part3', 'step3_match_all.csv')
|
|
|
|
with open(fpath, 'rb') as f:
|
|
|
|
rows = csv.reader(f)
|
|
|
|
for r in rows:
|
|
|
|
result[r[0]] = r[1].split(',')
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def get_weight(xmodel):
|
|
|
|
result = {}
|
|
|
|
fpath = os.path.join(os.getcwd(), 'build', 'part2', '%s-3.csv' % xmodel)
|
|
|
|
with open(fpath, 'rb') as f:
|
|
|
|
rows = csv.reader(f)
|
|
|
|
for r in rows:
|
|
|
|
result[r[0]] = [r[1], r[2], r[3], r[4], r[5], r[6]]
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def get_x_from_step3_all(m):
|
|
|
|
'''
|
|
|
|
July 1 requested
|
|
|
|
'''
|
|
|
|
fpath = os.path.join(os.getcwd(), 'build', 'part3', '%s-all.csv' % m)
|
|
|
|
los = {}
|
|
|
|
with open(fpath, 'rb') as f:
|
|
|
|
rows = csv.reader(f)
|
|
|
|
for r in rows:
|
|
|
|
for lo in r[1].split(','):
|
|
|
|
los[lo] = r[0]
|
|
|
|
return los
|
|
|
|
|
|
|
|
|
|
|
|
def produce(match_all):
|
|
|
|
for ii in xmodels.keys():
|
|
|
|
rows = []
|
|
|
|
# prepare for data --> July 1 request
|
|
|
|
step_3_data = get_x_from_step3_all(ii)
|
|
|
|
weight = get_weight(ii)
|
|
|
|
for lo in sorted(los.los):
|
|
|
|
is_matched = 1 if ii.lower() == los.los[lo]['model'].lower() else 0
|
|
|
|
# [July 1] some lo doesn't have that data, blank then
|
|
|
|
july_1_col = step_3_data[lo] if lo in step_3_data else ''
|
|
|
|
no_of_tree = '4Ts' if july_1_col == '4/4' else \
|
|
|
|
'3Ts' if july_1_col == '3/4' else \
|
|
|
|
'2Ts' if july_1_col == '2/4' else '1Ts'
|
|
|
|
r = [no_of_tree, lo, is_matched, los.los[lo]['weight']]
|
|
|
|
try:
|
|
|
|
r += weight[lo]
|
|
|
|
rows.append(r) # this will append only LO w/ weight
|
|
|
|
except KeyError:
|
|
|
|
# print(ii, ' = ', is_matched, ' / ', lo)
|
|
|
|
pass
|
|
|
|
_f = '%s-step4.csv' % ii
|
|
|
|
create_csv(_f, rows, directory='part4')
|
|
|
|
|
|
|
|
|
|
|
|
def main(*argv):
|
|
|
|
ma_data = get_match_all()
|
|
|
|
produce(ma_data)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if len(sys.argv) > 1:
|
|
|
|
main(sys.argv[1:])
|
|
|
|
else:
|
|
|
|
main()
|