|
|
|
'''
|
|
|
|
WTH
|
|
|
|
'''
|
|
|
|
# -*- coding:utf-8 -*-
|
|
|
|
#!/usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
from base import Lo, create_csv, TARGET_DIR
|
|
|
|
import os
|
|
|
|
import csv
|
|
|
|
import sys
|
|
|
|
from s2 import RANK_ORDER
|
|
|
|
|
|
|
|
los = Lo()
|
|
|
|
|
|
|
|
xmodels = {
|
|
|
|
'IMSf': {}, 'IMSD': {}, 'IMHf': {}, 'IMHD': {}, 'IFSf': {}, 'IFSD': {},
|
|
|
|
'IFHf': {}, 'IFHD': {}, 'CMSf': {}, 'CMSD': {}, 'CMHf': {}, 'CMHD': {},
|
|
|
|
'CFSf': {}, 'CFSD': {}, 'CFHf': {}, 'CFHD': {}, 'PMSf': {}, 'PMSD': {},
|
|
|
|
'PMHf': {}, 'PMHD': {}, 'PFSf': {}, 'PFSD': {}, 'PFHf': {}, 'PFHD': {},
|
|
|
|
}
|
|
|
|
fs = ('Case1_LS.csv', 'Case1_Gender.csv', 'Case1_Level.csv', 'Case1_SciF.csv')
|
|
|
|
|
|
|
|
|
|
|
|
def process_s2_data():
|
|
|
|
'''
|
|
|
|
docstring huhu?
|
|
|
|
'''
|
|
|
|
xm_data = {}
|
|
|
|
for ii in xmodels.keys():
|
|
|
|
fname = '%s-2.csv' % ii
|
|
|
|
fpath = os.path.join(TARGET_DIR, 'part2', fname)
|
|
|
|
with open(fpath, 'rb') as f:
|
|
|
|
rows = csv.reader(f)
|
|
|
|
rank = 0
|
|
|
|
for r in rows:
|
|
|
|
if r[1] == "rank":
|
|
|
|
rank = r[2]
|
|
|
|
continue
|
|
|
|
if ii not in xm_data:
|
|
|
|
xm_data[ii] = {'all': set()}
|
|
|
|
if rank not in xm_data[ii]:
|
|
|
|
xm_data[ii][rank] = {}
|
|
|
|
if r[0] not in xm_data[ii][rank]:
|
|
|
|
xm_data[ii][rank][r[0]] = []
|
|
|
|
xm_data[ii][rank][r[0]] = r[1].split(',')
|
|
|
|
xm_data[ii]['all'] = xm_data[ii]['all'].union(set(r[1].split(',')))
|
|
|
|
return xm_data
|
|
|
|
|
|
|
|
|
|
|
|
def produce_match_all(xdata):
|
|
|
|
rows = []
|
|
|
|
for ii in xmodels.keys():
|
|
|
|
_los = set()
|
|
|
|
for _rank in xdata[ii]:
|
|
|
|
for i in ii:
|
|
|
|
if i in xdata[ii][_rank]:
|
|
|
|
_los = _los.union(set(xdata[ii][_rank][i]))
|
|
|
|
rows.append([ii, ','.join(sorted(list(_los)))])
|
|
|
|
_f = 'step3_match_all.csv'
|
|
|
|
create_csv(_f, rows, directory='part3')
|
|
|
|
|
|
|
|
|
|
|
|
def produce_match_all_mra(xdata):
|
|
|
|
for ii in xmodels.keys():
|
|
|
|
lo_count = {}
|
|
|
|
for j in xdata[ii]['all']:
|
|
|
|
if j not in lo_count:
|
|
|
|
lo_count[j] = 0
|
|
|
|
for i in ii:
|
|
|
|
for rank in RANK_ORDER:
|
|
|
|
if rank in xdata[ii] and i in xdata[ii][rank] \
|
|
|
|
and j in xdata[ii][rank][i]:
|
|
|
|
lo_count[j] += 1
|
|
|
|
rows = []
|
|
|
|
max_count = len(RANK_ORDER)
|
|
|
|
for n in xrange(max_count, 0, -1):
|
|
|
|
rows.append([
|
|
|
|
'%s/%s' % (n, max_count),
|
|
|
|
','.join([k for (k, v) in lo_count.items() if v == n])
|
|
|
|
])
|
|
|
|
_f = '%s-all.csv' % (ii,)
|
|
|
|
create_csv(_f, rows, directory='part3')
|
|
|
|
|
|
|
|
|
|
|
|
def produce_match_rank_mra(xdata, rank):
|
|
|
|
for ii in xmodels.keys():
|
|
|
|
lo_count = {}
|
|
|
|
for j in xdata[ii]['all']:
|
|
|
|
if j not in lo_count:
|
|
|
|
lo_count[j] = 0
|
|
|
|
for i in ii:
|
|
|
|
if rank in xdata[ii] and i in xdata[ii][rank] and \
|
|
|
|
j in xdata[ii][rank][i]:
|
|
|
|
lo_count[j] += 1
|
|
|
|
rows = []
|
|
|
|
max_count = len(RANK_ORDER)
|
|
|
|
for n in xrange(max_count, 0, -1):
|
|
|
|
rows.append([
|
|
|
|
'%s/%s' % (n, max_count),
|
|
|
|
','.join([k for (k, v) in lo_count.items() if v == n])
|
|
|
|
])
|
|
|
|
_f = '%s-rank-%s.csv' % (ii, rank)
|
|
|
|
create_csv(_f, rows, directory='part3')
|
|
|
|
|
|
|
|
|
|
|
|
def main(*argv):
|
|
|
|
xmm = process_s2_data()
|
|
|
|
produce_match_all(xmm)
|
|
|
|
produce_match_all_mra(xmm)
|
|
|
|
for i in RANK_ORDER:
|
|
|
|
produce_match_rank_mra(xmm, i)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if len(sys.argv) > 1:
|
|
|
|
main(sys.argv[1:])
|
|
|
|
else:
|
|
|
|
main()
|