You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
2.7 KiB
92 lines
2.7 KiB
#!/usr/bin/env python |
|
# -*- coding:utf-8 -*- |
|
''' |
|
Step 9 |
|
''' |
|
from __future__ import print_function |
|
from base import create_csv, TARGET_DIR, MODEL_LIST, RAW_DIR |
|
import os |
|
import csv |
|
import re |
|
|
|
FN_CONST = 19 |
|
|
|
def get_retrieved_yynn_count(model): |
|
result = {} |
|
for i in '1234': |
|
P = os.path.join(TARGET_DIR, 'part7', '%s-%s.csv' % (model, i)) |
|
with open(P, 'rb') as f: |
|
rows = csv.reader(f) |
|
for row in rows: |
|
if row[0] not in result: |
|
result[row[0]] = row[len(row)-1] |
|
return result |
|
|
|
|
|
def process_file(seven_data, data, header): |
|
start_ind = 0 |
|
for i in xrange(0, len(header)): |
|
if re.search(r'^R', header[i]): |
|
start_ind = i |
|
break |
|
|
|
prf_output = [] |
|
for i in xrange(start_ind, len(data)): |
|
R_id = header[i] |
|
if R_id not in seven_data: |
|
print("%s missing in step7" % R_id) |
|
continue |
|
TP = float(data[i]) |
|
FP = float(seven_data[R_id]) - TP |
|
FN = float(FN_CONST) - TP |
|
# print('TP: %s, FP: %s, FN: %s' % (TP, FP, FN)) |
|
|
|
P = (TP / (TP + FP)) * 100 |
|
R = (TP / (TP + FN)) * 100 |
|
try: |
|
F = 2 * (P * R) / (P + R) |
|
except ZeroDivisionError: |
|
F = 'inf' |
|
print('ZeroDivisionError\n %s -- R_id: %s | P: %s | R: %s' % (data[0], R_id, P, R)) |
|
|
|
prf_output.append({ |
|
'R_id': R_id, |
|
"P": P, |
|
"R": R, |
|
"F": F, |
|
}) |
|
# print(prf_output) |
|
return prf_output |
|
|
|
|
|
def loop_thru_step8(): |
|
BASE_PATH = os.path.join(TARGET_DIR, 'part8') |
|
for i in os.walk(BASE_PATH): |
|
for j in i[2]: |
|
output = [] |
|
seven = get_retrieved_yynn_count(j[:4]) |
|
fpath = os.path.join(BASE_PATH, j) |
|
# print(fpath) |
|
with open(fpath, 'rb') as f: |
|
output_header = ['lo_id', j[:4]] |
|
output_sub_header = ['', '', ] |
|
rows = csv.reader(f) |
|
header = rows.next() |
|
is_header_created = False |
|
for r in rows: |
|
output_row = [r[0], j[:4]] |
|
prf = process_file(seven, r, header) |
|
for i in prf: |
|
if not is_header_created: |
|
output_header += [i['R_id'], '', ''] |
|
output_sub_header += ['P', 'R', 'F'] |
|
output_row += [i['P'], i['R'], i['F']] |
|
output.append(output_row) |
|
is_header_created = True |
|
|
|
output_name = j |
|
result = [output_header] + [output_sub_header] + output |
|
create_csv(output_name, result, directory='part9') |
|
is_header_created = False |
|
|
|
loop_thru_step8()
|
|
|