You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.2 KiB
174 lines
5.2 KiB
# -*- coding:utf-8 -*- |
|
#!/usr/bin/env python |
|
from __future__ import print_function |
|
from base import Lo, create_csv |
|
import os |
|
import csv |
|
import sys |
|
|
|
los = Lo() |
|
|
|
xmodels = { |
|
'IMSf': {}, 'IMSD': {}, 'IMHf': {}, 'IMHD': {}, 'IFSf': {}, 'IFSD': {}, |
|
'IFHf': {}, 'IFHD': {}, 'CMSf': {}, 'CMSD': {}, 'CMHf': {}, 'CMHD': {}, |
|
'CFSf': {}, 'CFSD': {}, 'CFHf': {}, 'CFHD': {}, 'PMSf': {}, 'PMSD': {}, |
|
'PMHf': {}, 'PMHD': {}, 'PFSf': {}, 'PFSD': {}, 'PFHf': {}, 'PFHD': {}, |
|
} |
|
rk_conv = { |
|
'I': ['4', '3', '2', ''], |
|
'P': ['4', '3', '2', ''], |
|
'C': ['4', '3', '2', ''], |
|
'F': ['5', '4', '3', '2', ''], |
|
'M': ['5', '4', '3', '2', ''], |
|
'H': ['4', '3', '2', ''], |
|
'S': ['4', '3', '2', ''], |
|
'f': ['4', '3', '2', ''], |
|
'D': ['4', '3', '2', ''], |
|
} |
|
fs = ('Case1_LS.csv', 'Case1_Gender.csv', 'Case1_Level.csv', 'Case1_SciF.csv') |
|
|
|
|
|
def process_s2_data(): |
|
sum_result = {} |
|
rank_result = {} |
|
step, rank = '', '' |
|
for i in fs: |
|
f_name = '%s-result.csv' % i |
|
# print(f_name) |
|
with open(os.path.join(os.getcwd(), 'build', f_name), 'rb') as f: |
|
rows = csv.reader(f) |
|
for r in rows: |
|
if r[0] in ('count', 'All Result'): |
|
step = r[0] |
|
rank = r[1] if r[0] == 'count' else '' |
|
continue |
|
if step == 'count': |
|
if r[0] not in rank_result: |
|
rank_result[r[0]] = {} |
|
rank_result[r[0]][rank] = r[1].split(',') |
|
elif step == 'All Result': |
|
if not r[0]: |
|
continue |
|
if r[0] in sum_result: |
|
# print('exists:', r[1], '|', step, '|', rank) |
|
pass |
|
sum_result[r[0]] = r[1].split(',') |
|
return { |
|
'sum': sum_result, 'rank': rank_result |
|
} |
|
|
|
|
|
def produce_s2_part1(sum_result): |
|
# create xxxx-1.csv |
|
for ii in xmodels.keys(): |
|
rows = [] |
|
rows.append([ii, ]) |
|
for i in ii: |
|
if i not in sum_result: |
|
continue |
|
rows.append([i, ','.join(sum_result[i])]) |
|
_f = '%s-1.csv' % ii |
|
create_csv(_f, rows, directory='part2') |
|
|
|
|
|
def produce_s2_part2_old(rank_result): |
|
# create xxxx-2.csv |
|
for ii in xmodels.keys(): |
|
rows = [] |
|
# get rank count first |
|
ro = set() |
|
for rk in xrange(0, 4): |
|
for i in ii: |
|
if i not in rank_result: |
|
continue |
|
ro = ro.union(set(rank_result[i].keys())) |
|
|
|
rank_no = 1 |
|
for rk in sorted(list(ro), reverse=True): |
|
# print(ii, ':', rk) |
|
rows.append(['Rank#%s' % rank_no, 'rank', rank_no, 'count', rk]) |
|
rank_no += 1 |
|
for i in ii: |
|
# find order |
|
if i not in rank_result: |
|
continue |
|
if rk in rank_result[i]: |
|
rows.append([i, ','.join(rank_result[i][rk])]) |
|
_f = '%s-2.csv' % ii |
|
create_csv(_f, rows, directory='part2') |
|
|
|
|
|
def produce_s2_part2(rank_result): |
|
# create xxxx-2.csv |
|
for ii in xmodels.keys(): |
|
rows = [] |
|
for rk in xrange(0, 4): |
|
rank_no = rk + 1 |
|
# print(ii, ':rank:', rank_no) |
|
rows.append(['Rank#%s' % rank_no, 'rank', rank_no]) |
|
for i in ii: |
|
if not rk_conv[i][rk]: |
|
continue |
|
# print(i, '::', rk_conv[i][rk]) |
|
rows.append([i, ','.join(rank_result[i][rk_conv[i][rk]])]) |
|
_f = '%s-2.csv' % ii |
|
create_csv(_f, rows, directory='part2') |
|
|
|
|
|
def process_lo_weight(): |
|
los = {} |
|
for i in fs: |
|
f_name = '%s-output.csv' % i |
|
with open(os.path.join(os.getcwd(), 'build', f_name), 'rb') as f: |
|
rows = csv.reader(f) |
|
for r in rows: |
|
_los = r[1].split(',') |
|
for _l in _los: |
|
if _l not in los: |
|
los[_l] = {} |
|
if r[0] in los[_l]: |
|
# print('exists:', _l, ':', r[0], ' > ') |
|
# los[_l]['%s2' % r[0]] = r[2:] |
|
pass |
|
los[_l][r[0]] = r[2:] |
|
return los |
|
|
|
|
|
def produce_part3(sum_result, lo_weight): |
|
# produce part3 |
|
for ii in xmodels.keys(): |
|
rows = [] |
|
lo_xmodels = set() |
|
for i in ii: |
|
if i in sum_result: |
|
lo_xmodels = lo_xmodels.union(set(sum_result[i])) |
|
lo_xmodels = sorted(list(lo_xmodels)) |
|
for l in lo_xmodels: |
|
lo_sum = [0, 0, 0, 0, 0, 0] |
|
if l not in lo_weight: |
|
continue |
|
for i in ii: |
|
if i not in lo_weight[l]: |
|
continue |
|
lo_sum = [ |
|
float(x) + float(y) for x, y |
|
in zip(lo_weight[l][i], lo_sum)] |
|
rows.append([l] + lo_sum) |
|
|
|
_f = '%s-3.csv' % ii |
|
create_csv(_f, rows, directory='part2') |
|
|
|
|
|
def main(*argv): |
|
_r = process_s2_data() |
|
_lw = process_lo_weight() |
|
produce_s2_part1(_r['sum']) |
|
produce_s2_part2(_r['rank']) |
|
produce_part3(_r['sum'], _lw) |
|
|
|
|
|
if __name__ == '__main__': |
|
if len(sys.argv) > 1: |
|
main(sys.argv[1:]) |
|
else: |
|
main()
|
|
|