forked from rachanon/stdbWeb
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
609 lines
18 KiB
609 lines
18 KiB
9 years ago
|
/*! ecdsa-modified-1.0.4.js (c) Stephan Thomas, Kenji Urushima | github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE
|
||
|
*/
|
||
|
/*
|
||
|
* ecdsa-modified.js - modified Bitcoin.ECDSA class
|
||
|
*
|
||
|
* Copyright (c) 2013 Stefan Thomas (github.com/justmoon)
|
||
|
* Kenji Urushima (kenji.urushima@gmail.com)
|
||
|
* LICENSE
|
||
|
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @fileOverview
|
||
|
* @name ecdsa-modified-1.0.js
|
||
|
* @author Stefan Thomas (github.com/justmoon) and Kenji Urushima (kenji.urushima@gmail.com)
|
||
|
* @version 1.0.4 (2013-Oct-06)
|
||
|
* @since jsrsasign 4.0
|
||
|
* @license <a href="https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE">MIT License</a>
|
||
|
*/
|
||
|
|
||
|
if (typeof KJUR == "undefined" || !KJUR) KJUR = {};
|
||
|
if (typeof KJUR.crypto == "undefined" || !KJUR.crypto) KJUR.crypto = {};
|
||
|
|
||
|
/**
|
||
|
* class for EC key generation, ECDSA signing and verifcation
|
||
|
* @name KJUR.crypto.ECDSA
|
||
|
* @class class for EC key generation, ECDSA signing and verifcation
|
||
|
* @description
|
||
|
* <p>
|
||
|
* CAUTION: Most of the case, you don't need to use this class except
|
||
|
* for generating an EC key pair. Please use {@link KJUR.crypto.Signature} class instead.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* This class was originally developped by Stefan Thomas for Bitcoin JavaScript library.
|
||
|
* (See {@link https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/src/ecdsa.js})
|
||
|
* Currently this class supports following named curves and their aliases.
|
||
|
* <ul>
|
||
|
* <li>secp256r1, NIST P-256, P-256, prime256v1 (*)</li>
|
||
|
* <li>secp256k1 (*)</li>
|
||
|
* <li>secp384r1, NIST P-384, P-384 (*)</li>
|
||
|
* </ul>
|
||
|
* </p>
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA = function(params) {
|
||
|
var curveName = "secp256r1"; // curve name default
|
||
|
var ecparams = null;
|
||
|
var prvKeyHex = null;
|
||
|
var pubKeyHex = null;
|
||
|
|
||
|
var rng = new SecureRandom();
|
||
|
|
||
|
var P_OVER_FOUR = null;
|
||
|
|
||
|
this.type = "EC";
|
||
|
|
||
|
function implShamirsTrick(P, k, Q, l) {
|
||
|
var m = Math.max(k.bitLength(), l.bitLength());
|
||
|
var Z = P.add2D(Q);
|
||
|
var R = P.curve.getInfinity();
|
||
|
|
||
|
for (var i = m - 1; i >= 0; --i) {
|
||
|
R = R.twice2D();
|
||
|
|
||
|
R.z = BigInteger.ONE;
|
||
|
|
||
|
if (k.testBit(i)) {
|
||
|
if (l.testBit(i)) {
|
||
|
R = R.add2D(Z);
|
||
|
} else {
|
||
|
R = R.add2D(P);
|
||
|
}
|
||
|
} else {
|
||
|
if (l.testBit(i)) {
|
||
|
R = R.add2D(Q);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return R;
|
||
|
};
|
||
|
|
||
|
//===========================
|
||
|
// PUBLIC METHODS
|
||
|
//===========================
|
||
|
this.getBigRandom = function (limit) {
|
||
|
return new BigInteger(limit.bitLength(), rng)
|
||
|
.mod(limit.subtract(BigInteger.ONE))
|
||
|
.add(BigInteger.ONE)
|
||
|
;
|
||
|
};
|
||
|
|
||
|
this.setNamedCurve = function(curveName) {
|
||
|
this.ecparams = KJUR.crypto.ECParameterDB.getByName(curveName);
|
||
|
this.prvKeyHex = null;
|
||
|
this.pubKeyHex = null;
|
||
|
this.curveName = curveName;
|
||
|
}
|
||
|
|
||
|
this.setPrivateKeyHex = function(prvKeyHex) {
|
||
|
this.isPrivate = true;
|
||
|
this.prvKeyHex = prvKeyHex;
|
||
|
}
|
||
|
|
||
|
this.setPublicKeyHex = function(pubKeyHex) {
|
||
|
this.isPublic = true;
|
||
|
this.pubKeyHex = pubKeyHex;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* generate a EC key pair
|
||
|
* @name generateKeyPairHex
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @return {Array} associative array of hexadecimal string of private and public key
|
||
|
* @since ecdsa-modified 1.0.1
|
||
|
* @example
|
||
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
|
||
|
* var keypair = ec.generateKeyPairHex();
|
||
|
* var pubhex = keypair.ecpubhex; // hexadecimal string of EC private key (=d)
|
||
|
* var prvhex = keypair.ecprvhex; // hexadecimal string of EC public key
|
||
|
*/
|
||
|
this.generateKeyPairHex = function() {
|
||
|
var biN = this.ecparams['n'];
|
||
|
var biPrv = this.getBigRandom(biN);
|
||
|
var epPub = this.ecparams['G'].multiply(biPrv);
|
||
|
var biX = epPub.getX().toBigInteger();
|
||
|
var biY = epPub.getY().toBigInteger();
|
||
|
|
||
|
var charlen = this.ecparams['keylen'] / 4;
|
||
|
var hPrv = ("0000000000" + biPrv.toString(16)).slice(- charlen);
|
||
|
var hX = ("0000000000" + biX.toString(16)).slice(- charlen);
|
||
|
var hY = ("0000000000" + biY.toString(16)).slice(- charlen);
|
||
|
var hPub = "04" + hX + hY;
|
||
|
|
||
|
this.setPrivateKeyHex(hPrv);
|
||
|
this.setPublicKeyHex(hPub);
|
||
|
return {'ecprvhex': hPrv, 'ecpubhex': hPub};
|
||
|
};
|
||
|
|
||
|
this.signWithMessageHash = function(hashHex) {
|
||
|
return this.signHex(hashHex, this.prvKeyHex);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* signing to message hash
|
||
|
* @name signHex
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @param {String} hashHex hexadecimal string of hash value of signing message
|
||
|
* @param {String} privHex hexadecimal string of EC private key
|
||
|
* @return {String} hexadecimal string of ECDSA signature
|
||
|
* @since ecdsa-modified 1.0.1
|
||
|
* @example
|
||
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
|
||
|
* var sigValue = ec.signHex(hash, prvKey);
|
||
|
*/
|
||
|
this.signHex = function (hashHex, privHex) {
|
||
|
var d = new BigInteger(privHex, 16);
|
||
|
var n = this.ecparams['n'];
|
||
|
var e = new BigInteger(hashHex, 16);
|
||
|
|
||
|
do {
|
||
|
var k = this.getBigRandom(n);
|
||
|
var G = this.ecparams['G'];
|
||
|
var Q = G.multiply(k);
|
||
|
var r = Q.getX().toBigInteger().mod(n);
|
||
|
} while (r.compareTo(BigInteger.ZERO) <= 0);
|
||
|
|
||
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
|
||
|
|
||
|
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(r, s);
|
||
|
};
|
||
|
|
||
|
this.sign = function (hash, priv) {
|
||
|
var d = priv;
|
||
|
var n = this.ecparams['n'];
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
|
||
|
do {
|
||
|
var k = this.getBigRandom(n);
|
||
|
var G = this.ecparams['G'];
|
||
|
var Q = G.multiply(k);
|
||
|
var r = Q.getX().toBigInteger().mod(n);
|
||
|
} while (r.compareTo(BigInteger.ZERO) <= 0);
|
||
|
|
||
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
|
||
|
return this.serializeSig(r, s);
|
||
|
};
|
||
|
|
||
|
this.verifyWithMessageHash = function(hashHex, sigHex) {
|
||
|
return this.verifyHex(hashHex, sigHex, this.pubKeyHex);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* verifying signature with message hash and public key
|
||
|
* @name verifyHex
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @param {String} hashHex hexadecimal string of hash value of signing message
|
||
|
* @param {String} sigHex hexadecimal string of signature value
|
||
|
* @param {String} pubkeyHex hexadecimal string of public key
|
||
|
* @return {Boolean} true if the signature is valid, otherwise false
|
||
|
* @since ecdsa-modified 1.0.1
|
||
|
* @example
|
||
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
|
||
|
* var result = ec.verifyHex(msgHashHex, sigHex, pubkeyHex);
|
||
|
*/
|
||
|
this.verifyHex = function(hashHex, sigHex, pubkeyHex) {
|
||
|
var r,s;
|
||
|
|
||
|
var obj = KJUR.crypto.ECDSA.parseSigHex(sigHex);
|
||
|
r = obj.r;
|
||
|
s = obj.s;
|
||
|
|
||
|
var Q;
|
||
|
Q = ECPointFp.decodeFromHex(this.ecparams['curve'], pubkeyHex);
|
||
|
var e = new BigInteger(hashHex, 16);
|
||
|
|
||
|
return this.verifyRaw(e, r, s, Q);
|
||
|
};
|
||
|
|
||
|
this.verify = function (hash, sig, pubkey) {
|
||
|
var r,s;
|
||
|
if (Bitcoin.Util.isArray(sig)) {
|
||
|
var obj = this.parseSig(sig);
|
||
|
r = obj.r;
|
||
|
s = obj.s;
|
||
|
} else if ("object" === typeof sig && sig.r && sig.s) {
|
||
|
r = sig.r;
|
||
|
s = sig.s;
|
||
|
} else {
|
||
|
throw "Invalid value for signature";
|
||
|
}
|
||
|
|
||
|
var Q;
|
||
|
if (pubkey instanceof ECPointFp) {
|
||
|
Q = pubkey;
|
||
|
} else if (Bitcoin.Util.isArray(pubkey)) {
|
||
|
Q = ECPointFp.decodeFrom(this.ecparams['curve'], pubkey);
|
||
|
} else {
|
||
|
throw "Invalid format for pubkey value, must be byte array or ECPointFp";
|
||
|
}
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
|
||
|
return this.verifyRaw(e, r, s, Q);
|
||
|
};
|
||
|
|
||
|
this.verifyRaw = function (e, r, s, Q) {
|
||
|
var n = this.ecparams['n'];
|
||
|
var G = this.ecparams['G'];
|
||
|
|
||
|
if (r.compareTo(BigInteger.ONE) < 0 ||
|
||
|
r.compareTo(n) >= 0)
|
||
|
return false;
|
||
|
|
||
|
if (s.compareTo(BigInteger.ONE) < 0 ||
|
||
|
s.compareTo(n) >= 0)
|
||
|
return false;
|
||
|
|
||
|
var c = s.modInverse(n);
|
||
|
|
||
|
var u1 = e.multiply(c).mod(n);
|
||
|
var u2 = r.multiply(c).mod(n);
|
||
|
|
||
|
// TODO(!!!): For some reason Shamir's trick isn't working with
|
||
|
// signed message verification!? Probably an implementation
|
||
|
// error!
|
||
|
//var point = implShamirsTrick(G, u1, Q, u2);
|
||
|
var point = G.multiply(u1).add(Q.multiply(u2));
|
||
|
|
||
|
var v = point.getX().toBigInteger().mod(n);
|
||
|
|
||
|
return v.equals(r);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Serialize a signature into DER format.
|
||
|
*
|
||
|
* Takes two BigIntegers representing r and s and returns a byte array.
|
||
|
*/
|
||
|
this.serializeSig = function (r, s) {
|
||
|
var rBa = r.toByteArraySigned();
|
||
|
var sBa = s.toByteArraySigned();
|
||
|
|
||
|
var sequence = [];
|
||
|
sequence.push(0x02); // INTEGER
|
||
|
sequence.push(rBa.length);
|
||
|
sequence = sequence.concat(rBa);
|
||
|
|
||
|
sequence.push(0x02); // INTEGER
|
||
|
sequence.push(sBa.length);
|
||
|
sequence = sequence.concat(sBa);
|
||
|
|
||
|
sequence.unshift(sequence.length);
|
||
|
sequence.unshift(0x30); // SEQUENCE
|
||
|
return sequence;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Parses a byte array containing a DER-encoded signature.
|
||
|
*
|
||
|
* This function will return an object of the form:
|
||
|
*
|
||
|
* {
|
||
|
* r: BigInteger,
|
||
|
* s: BigInteger
|
||
|
* }
|
||
|
*/
|
||
|
this.parseSig = function (sig) {
|
||
|
var cursor;
|
||
|
if (sig[0] != 0x30)
|
||
|
throw new Error("Signature not a valid DERSequence");
|
||
|
|
||
|
cursor = 2;
|
||
|
if (sig[cursor] != 0x02)
|
||
|
throw new Error("First element in signature must be a DERInteger");;
|
||
|
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
|
||
|
|
||
|
cursor += 2+sig[cursor+1];
|
||
|
if (sig[cursor] != 0x02)
|
||
|
throw new Error("Second element in signature must be a DERInteger");
|
||
|
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
|
||
|
|
||
|
cursor += 2+sig[cursor+1];
|
||
|
|
||
|
//if (cursor != sig.length)
|
||
|
// throw new Error("Extra bytes in signature");
|
||
|
|
||
|
var r = BigInteger.fromByteArrayUnsigned(rBa);
|
||
|
var s = BigInteger.fromByteArrayUnsigned(sBa);
|
||
|
|
||
|
return {r: r, s: s};
|
||
|
};
|
||
|
|
||
|
this.parseSigCompact = function (sig) {
|
||
|
if (sig.length !== 65) {
|
||
|
throw "Signature has the wrong length";
|
||
|
}
|
||
|
|
||
|
// Signature is prefixed with a type byte storing three bits of
|
||
|
// information.
|
||
|
var i = sig[0] - 27;
|
||
|
if (i < 0 || i > 7) {
|
||
|
throw "Invalid signature type";
|
||
|
}
|
||
|
|
||
|
var n = this.ecparams['n'];
|
||
|
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
|
||
|
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
|
||
|
|
||
|
return {r: r, s: s, i: i};
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Recover a public key from a signature.
|
||
|
*
|
||
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
|
||
|
* Key Recovery Operation".
|
||
|
*
|
||
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||
|
*/
|
||
|
/*
|
||
|
recoverPubKey: function (r, s, hash, i) {
|
||
|
// The recovery parameter i has two bits.
|
||
|
i = i & 3;
|
||
|
|
||
|
// The less significant bit specifies whether the y coordinate
|
||
|
// of the compressed point is even or not.
|
||
|
var isYEven = i & 1;
|
||
|
|
||
|
// The more significant bit specifies whether we should use the
|
||
|
// first or second candidate key.
|
||
|
var isSecondKey = i >> 1;
|
||
|
|
||
|
var n = this.ecparams['n'];
|
||
|
var G = this.ecparams['G'];
|
||
|
var curve = this.ecparams['curve'];
|
||
|
var p = curve.getQ();
|
||
|
var a = curve.getA().toBigInteger();
|
||
|
var b = curve.getB().toBigInteger();
|
||
|
|
||
|
// We precalculate (p + 1) / 4 where p is if the field order
|
||
|
if (!P_OVER_FOUR) {
|
||
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
|
||
|
}
|
||
|
|
||
|
// 1.1 Compute x
|
||
|
var x = isSecondKey ? r.add(n) : r;
|
||
|
|
||
|
// 1.3 Convert x to point
|
||
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
|
||
|
var beta = alpha.modPow(P_OVER_FOUR, p);
|
||
|
|
||
|
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
|
||
|
// If beta is even, but y isn't or vice versa, then convert it,
|
||
|
// otherwise we're done and y == beta.
|
||
|
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
|
||
|
|
||
|
// 1.4 Check that nR is at infinity
|
||
|
var R = new ECPointFp(curve,
|
||
|
curve.fromBigInteger(x),
|
||
|
curve.fromBigInteger(y));
|
||
|
R.validate();
|
||
|
|
||
|
// 1.5 Compute e from M
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
|
||
|
|
||
|
// 1.6 Compute Q = r^-1 (sR - eG)
|
||
|
var rInv = r.modInverse(n);
|
||
|
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
|
||
|
|
||
|
Q.validate();
|
||
|
if (!this.verifyRaw(e, r, s, Q)) {
|
||
|
throw "Pubkey recovery unsuccessful";
|
||
|
}
|
||
|
|
||
|
var pubKey = new Bitcoin.ECKey();
|
||
|
pubKey.pub = Q;
|
||
|
return pubKey;
|
||
|
},
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Calculate pubkey extraction parameter.
|
||
|
*
|
||
|
* When extracting a pubkey from a signature, we have to
|
||
|
* distinguish four different cases. Rather than putting this
|
||
|
* burden on the verifier, Bitcoin includes a 2-bit value with the
|
||
|
* signature.
|
||
|
*
|
||
|
* This function simply tries all four cases and returns the value
|
||
|
* that resulted in a successful pubkey recovery.
|
||
|
*/
|
||
|
/*
|
||
|
calcPubkeyRecoveryParam: function (address, r, s, hash) {
|
||
|
for (var i = 0; i < 4; i++) {
|
||
|
try {
|
||
|
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
|
||
|
if (pubkey.getBitcoinAddress().toString() == address) {
|
||
|
return i;
|
||
|
}
|
||
|
} catch (e) {}
|
||
|
}
|
||
|
throw "Unable to find valid recovery factor";
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
if (params !== undefined) {
|
||
|
if (params['curve'] !== undefined) {
|
||
|
this.curveName = params['curve'];
|
||
|
}
|
||
|
}
|
||
|
if (this.curveName === undefined) this.curveName = curveName;
|
||
|
this.setNamedCurve(this.curveName);
|
||
|
if (params !== undefined) {
|
||
|
if (params['prv'] !== undefined) this.setPrivateKeyHex(params['prv']);
|
||
|
if (params['pub'] !== undefined) this.setPublicKeyHex(params['pub']);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* parse ASN.1 DER encoded ECDSA signature
|
||
|
* @name parseSigHex
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {String} sigHex hexadecimal string of ECDSA signature value
|
||
|
* @return {Array} associative array of signature field r and s of BigInteger
|
||
|
* @since ecdsa-modified 1.0.1
|
||
|
* @example
|
||
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
|
||
|
* var sig = ec.parseSigHex('30...');
|
||
|
* var biR = sig.r; // BigInteger object for 'r' field of signature.
|
||
|
* var biS = sig.s; // BigInteger object for 's' field of signature.
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.parseSigHex = function(sigHex) {
|
||
|
var p = KJUR.crypto.ECDSA.parseSigHexInHexRS(sigHex);
|
||
|
var biR = new BigInteger(p.r, 16);
|
||
|
var biS = new BigInteger(p.s, 16);
|
||
|
|
||
|
return {'r': biR, 's': biS};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* parse ASN.1 DER encoded ECDSA signature
|
||
|
* @name parseSigHexInHexRS
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {String} sigHex hexadecimal string of ECDSA signature value
|
||
|
* @return {Array} associative array of signature field r and s in hexadecimal
|
||
|
* @since ecdsa-modified 1.0.3
|
||
|
* @example
|
||
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'});
|
||
|
* var sig = ec.parseSigHexInHexRS('30...');
|
||
|
* var hR = sig.r; // hexadecimal string for 'r' field of signature.
|
||
|
* var hS = sig.s; // hexadecimal string for 's' field of signature.
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.parseSigHexInHexRS = function(sigHex) {
|
||
|
// 1. ASN.1 Sequence Check
|
||
|
if (sigHex.substr(0, 2) != "30")
|
||
|
throw "signature is not a ASN.1 sequence";
|
||
|
|
||
|
// 2. Items of ASN.1 Sequence Check
|
||
|
var a = ASN1HEX.getPosArrayOfChildren_AtObj(sigHex, 0);
|
||
|
if (a.length != 2)
|
||
|
throw "number of signature ASN.1 sequence elements seem wrong";
|
||
|
|
||
|
// 3. Integer check
|
||
|
var iTLV1 = a[0];
|
||
|
var iTLV2 = a[1];
|
||
|
if (sigHex.substr(iTLV1, 2) != "02")
|
||
|
throw "1st item of sequene of signature is not ASN.1 integer";
|
||
|
if (sigHex.substr(iTLV2, 2) != "02")
|
||
|
throw "2nd item of sequene of signature is not ASN.1 integer";
|
||
|
|
||
|
// 4. getting value
|
||
|
var hR = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV1);
|
||
|
var hS = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV2);
|
||
|
|
||
|
return {'r': hR, 's': hS};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* convert hexadecimal ASN.1 encoded signature to concatinated signature
|
||
|
* @name asn1SigToConcatSig
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {String} asn1Hex hexadecimal string of ASN.1 encoded ECDSA signature value
|
||
|
* @return {String} r-s concatinated format of ECDSA signature value
|
||
|
* @since ecdsa-modified 1.0.3
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.asn1SigToConcatSig = function(asn1Sig) {
|
||
|
var pSig = KJUR.crypto.ECDSA.parseSigHexInHexRS(asn1Sig);
|
||
|
var hR = pSig.r;
|
||
|
var hS = pSig.s;
|
||
|
|
||
|
if (hR.substr(0, 2) == "00" && (((hR.length / 2) * 8) % (16 * 8)) == 8)
|
||
|
hR = hR.substr(2);
|
||
|
|
||
|
if (hS.substr(0, 2) == "00" && (((hS.length / 2) * 8) % (16 * 8)) == 8)
|
||
|
hS = hS.substr(2);
|
||
|
|
||
|
if ((((hR.length / 2) * 8) % (16 * 8)) != 0)
|
||
|
throw "unknown ECDSA sig r length error";
|
||
|
|
||
|
if ((((hS.length / 2) * 8) % (16 * 8)) != 0)
|
||
|
throw "unknown ECDSA sig s length error";
|
||
|
|
||
|
return hR + hS;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* convert hexadecimal concatinated signature to ASN.1 encoded signature
|
||
|
* @name concatSigToASN1Sig
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {String} concatSig r-s concatinated format of ECDSA signature value
|
||
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
|
||
|
* @since ecdsa-modified 1.0.3
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.concatSigToASN1Sig = function(concatSig) {
|
||
|
if ((((concatSig.length / 2) * 8) % (16 * 8)) != 0)
|
||
|
throw "unknown ECDSA concatinated r-s sig length error";
|
||
|
|
||
|
var hR = concatSig.substr(0, concatSig.length / 2);
|
||
|
var hS = concatSig.substr(concatSig.length / 2);
|
||
|
return KJUR.crypto.ECDSA.hexRSSigToASN1Sig(hR, hS);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* convert hexadecimal R and S value of signature to ASN.1 encoded signature
|
||
|
* @name hexRSSigToASN1Sig
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {String} hR hexadecimal string of R field of ECDSA signature value
|
||
|
* @param {String} hS hexadecimal string of S field of ECDSA signature value
|
||
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
|
||
|
* @since ecdsa-modified 1.0.3
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.hexRSSigToASN1Sig = function(hR, hS) {
|
||
|
var biR = new BigInteger(hR, 16);
|
||
|
var biS = new BigInteger(hS, 16);
|
||
|
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(biR, biS);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* convert R and S BigInteger object of signature to ASN.1 encoded signature
|
||
|
* @name biRSSigToASN1Sig
|
||
|
* @memberOf KJUR.crypto.ECDSA
|
||
|
* @function
|
||
|
* @static
|
||
|
* @param {BigInteger} biR BigInteger object of R field of ECDSA signature value
|
||
|
* @param {BigInteger} biS BIgInteger object of S field of ECDSA signature value
|
||
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value
|
||
|
* @since ecdsa-modified 1.0.3
|
||
|
*/
|
||
|
KJUR.crypto.ECDSA.biRSSigToASN1Sig = function(biR, biS) {
|
||
|
var derR = new KJUR.asn1.DERInteger({'bigint': biR});
|
||
|
var derS = new KJUR.asn1.DERInteger({'bigint': biS});
|
||
|
var derSeq = new KJUR.asn1.DERSequence({'array': [derR, derS]});
|
||
|
return derSeq.getEncodedHex();
|
||
|
};
|
||
|
|