forked from rachanon/stdbWeb
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
5.6 KiB
210 lines
5.6 KiB
9 years ago
|
/*! (c) Stefan Thomas | https://github.com/bitcoinjs/bitcoinjs-lib
|
||
|
*/
|
||
|
/*
|
||
|
* splitted from bitcoin-lib/ecdsa.js
|
||
|
*
|
||
|
* version 1.0.0 is the original of bitcoin-lib/ecdsa.js
|
||
|
*/
|
||
|
ECFieldElementFp.prototype.getByteLength = function () {
|
||
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.getEncoded = function (compressed) {
|
||
|
var integerToBytes = function(i, len) {
|
||
|
var bytes = i.toByteArrayUnsigned();
|
||
|
|
||
|
if (len < bytes.length) {
|
||
|
bytes = bytes.slice(bytes.length-len);
|
||
|
} else while (len > bytes.length) {
|
||
|
bytes.unshift(0);
|
||
|
}
|
||
|
return bytes;
|
||
|
};
|
||
|
|
||
|
var x = this.getX().toBigInteger();
|
||
|
var y = this.getY().toBigInteger();
|
||
|
|
||
|
// Get value as a 32-byte Buffer
|
||
|
// Fixed length based on a patch by bitaddress.org and Casascius
|
||
|
var enc = integerToBytes(x, 32);
|
||
|
|
||
|
if (compressed) {
|
||
|
if (y.isEven()) {
|
||
|
// Compressed even pubkey
|
||
|
// M = 02 || X
|
||
|
enc.unshift(0x02);
|
||
|
} else {
|
||
|
// Compressed uneven pubkey
|
||
|
// M = 03 || X
|
||
|
enc.unshift(0x03);
|
||
|
}
|
||
|
} else {
|
||
|
// Uncompressed pubkey
|
||
|
// M = 04 || X || Y
|
||
|
enc.unshift(0x04);
|
||
|
enc = enc.concat(integerToBytes(y, 32));
|
||
|
}
|
||
|
return enc;
|
||
|
};
|
||
|
|
||
|
ECPointFp.decodeFrom = function (curve, enc) {
|
||
|
var type = enc[0];
|
||
|
var dataLen = enc.length-1;
|
||
|
|
||
|
// Extract x and y as byte arrays
|
||
|
var xBa = enc.slice(1, 1 + dataLen/2);
|
||
|
var yBa = enc.slice(1 + dataLen/2, 1 + dataLen);
|
||
|
|
||
|
// Prepend zero byte to prevent interpretation as negative integer
|
||
|
xBa.unshift(0);
|
||
|
yBa.unshift(0);
|
||
|
|
||
|
// Convert to BigIntegers
|
||
|
var x = new BigInteger(xBa);
|
||
|
var y = new BigInteger(yBa);
|
||
|
|
||
|
// Return point
|
||
|
return new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* @since ec-patch.js 1.0.1
|
||
|
*/
|
||
|
ECPointFp.decodeFromHex = function (curve, encHex) {
|
||
|
var type = encHex.substr(0, 2); // shall be "04"
|
||
|
var dataLen = encHex.length - 2;
|
||
|
|
||
|
// Extract x and y as byte arrays
|
||
|
var xHex = encHex.substr(2, dataLen / 2);
|
||
|
var yHex = encHex.substr(2 + dataLen / 2, dataLen / 2);
|
||
|
|
||
|
// Convert to BigIntegers
|
||
|
var x = new BigInteger(xHex, 16);
|
||
|
var y = new BigInteger(yHex, 16);
|
||
|
|
||
|
// Return point
|
||
|
return new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.add2D = function (b) {
|
||
|
if(this.isInfinity()) return b;
|
||
|
if(b.isInfinity()) return this;
|
||
|
|
||
|
if (this.x.equals(b.x)) {
|
||
|
if (this.y.equals(b.y)) {
|
||
|
// this = b, i.e. this must be doubled
|
||
|
return this.twice();
|
||
|
}
|
||
|
// this = -b, i.e. the result is the point at infinity
|
||
|
return this.curve.getInfinity();
|
||
|
}
|
||
|
|
||
|
var x_x = b.x.subtract(this.x);
|
||
|
var y_y = b.y.subtract(this.y);
|
||
|
var gamma = y_y.divide(x_x);
|
||
|
|
||
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
||
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
||
|
|
||
|
return new ECPointFp(this.curve, x3, y3);
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.twice2D = function () {
|
||
|
if (this.isInfinity()) return this;
|
||
|
if (this.y.toBigInteger().signum() == 0) {
|
||
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
||
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
||
|
return this.curve.getInfinity();
|
||
|
}
|
||
|
|
||
|
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
|
||
|
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
|
||
|
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
|
||
|
|
||
|
var x3 = gamma.square().subtract(this.x.multiply(TWO));
|
||
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
||
|
|
||
|
return new ECPointFp(this.curve, x3, y3);
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.multiply2D = function (k) {
|
||
|
if(this.isInfinity()) return this;
|
||
|
if(k.signum() == 0) return this.curve.getInfinity();
|
||
|
|
||
|
var e = k;
|
||
|
var h = e.multiply(new BigInteger("3"));
|
||
|
|
||
|
var neg = this.negate();
|
||
|
var R = this;
|
||
|
|
||
|
var i;
|
||
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
||
|
R = R.twice();
|
||
|
|
||
|
var hBit = h.testBit(i);
|
||
|
var eBit = e.testBit(i);
|
||
|
|
||
|
if (hBit != eBit) {
|
||
|
R = R.add2D(hBit ? this : neg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return R;
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.isOnCurve = function () {
|
||
|
var x = this.getX().toBigInteger();
|
||
|
var y = this.getY().toBigInteger();
|
||
|
var a = this.curve.getA().toBigInteger();
|
||
|
var b = this.curve.getB().toBigInteger();
|
||
|
var n = this.curve.getQ();
|
||
|
var lhs = y.multiply(y).mod(n);
|
||
|
var rhs = x.multiply(x).multiply(x)
|
||
|
.add(a.multiply(x)).add(b).mod(n);
|
||
|
return lhs.equals(rhs);
|
||
|
};
|
||
|
|
||
|
ECPointFp.prototype.toString = function () {
|
||
|
return '('+this.getX().toBigInteger().toString()+','+
|
||
|
this.getY().toBigInteger().toString()+')';
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Validate an elliptic curve point.
|
||
|
*
|
||
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
||
|
*/
|
||
|
ECPointFp.prototype.validate = function () {
|
||
|
var n = this.curve.getQ();
|
||
|
|
||
|
// Check Q != O
|
||
|
if (this.isInfinity()) {
|
||
|
throw new Error("Point is at infinity.");
|
||
|
}
|
||
|
|
||
|
// Check coordinate bounds
|
||
|
var x = this.getX().toBigInteger();
|
||
|
var y = this.getY().toBigInteger();
|
||
|
if (x.compareTo(BigInteger.ONE) < 0 ||
|
||
|
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
||
|
throw new Error('x coordinate out of bounds');
|
||
|
}
|
||
|
if (y.compareTo(BigInteger.ONE) < 0 ||
|
||
|
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
||
|
throw new Error('y coordinate out of bounds');
|
||
|
}
|
||
|
|
||
|
// Check y^2 = x^3 + ax + b (mod n)
|
||
|
if (!this.isOnCurve()) {
|
||
|
throw new Error("Point is not on the curve.");
|
||
|
}
|
||
|
|
||
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
||
|
if (this.multiply(n).isInfinity()) {
|
||
|
// TODO: This check doesn't work - fix.
|
||
|
throw new Error("Point is not a scalar multiple of G.");
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
};
|