forked from rachanon/stdbWeb
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
608 lines
18 KiB
608 lines
18 KiB
/*! ecdsa-modified-1.0.4.js (c) Stephan Thomas, Kenji Urushima | github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE |
|
*/ |
|
/* |
|
* ecdsa-modified.js - modified Bitcoin.ECDSA class |
|
* |
|
* Copyright (c) 2013 Stefan Thomas (github.com/justmoon) |
|
* Kenji Urushima (kenji.urushima@gmail.com) |
|
* LICENSE |
|
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE |
|
*/ |
|
|
|
/** |
|
* @fileOverview |
|
* @name ecdsa-modified-1.0.js |
|
* @author Stefan Thomas (github.com/justmoon) and Kenji Urushima (kenji.urushima@gmail.com) |
|
* @version 1.0.4 (2013-Oct-06) |
|
* @since jsrsasign 4.0 |
|
* @license <a href="https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/LICENSE">MIT License</a> |
|
*/ |
|
|
|
if (typeof KJUR == "undefined" || !KJUR) KJUR = {}; |
|
if (typeof KJUR.crypto == "undefined" || !KJUR.crypto) KJUR.crypto = {}; |
|
|
|
/** |
|
* class for EC key generation, ECDSA signing and verifcation |
|
* @name KJUR.crypto.ECDSA |
|
* @class class for EC key generation, ECDSA signing and verifcation |
|
* @description |
|
* <p> |
|
* CAUTION: Most of the case, you don't need to use this class except |
|
* for generating an EC key pair. Please use {@link KJUR.crypto.Signature} class instead. |
|
* </p> |
|
* <p> |
|
* This class was originally developped by Stefan Thomas for Bitcoin JavaScript library. |
|
* (See {@link https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/src/ecdsa.js}) |
|
* Currently this class supports following named curves and their aliases. |
|
* <ul> |
|
* <li>secp256r1, NIST P-256, P-256, prime256v1 (*)</li> |
|
* <li>secp256k1 (*)</li> |
|
* <li>secp384r1, NIST P-384, P-384 (*)</li> |
|
* </ul> |
|
* </p> |
|
*/ |
|
KJUR.crypto.ECDSA = function(params) { |
|
var curveName = "secp256r1"; // curve name default |
|
var ecparams = null; |
|
var prvKeyHex = null; |
|
var pubKeyHex = null; |
|
|
|
var rng = new SecureRandom(); |
|
|
|
var P_OVER_FOUR = null; |
|
|
|
this.type = "EC"; |
|
|
|
function implShamirsTrick(P, k, Q, l) { |
|
var m = Math.max(k.bitLength(), l.bitLength()); |
|
var Z = P.add2D(Q); |
|
var R = P.curve.getInfinity(); |
|
|
|
for (var i = m - 1; i >= 0; --i) { |
|
R = R.twice2D(); |
|
|
|
R.z = BigInteger.ONE; |
|
|
|
if (k.testBit(i)) { |
|
if (l.testBit(i)) { |
|
R = R.add2D(Z); |
|
} else { |
|
R = R.add2D(P); |
|
} |
|
} else { |
|
if (l.testBit(i)) { |
|
R = R.add2D(Q); |
|
} |
|
} |
|
} |
|
|
|
return R; |
|
}; |
|
|
|
//=========================== |
|
// PUBLIC METHODS |
|
//=========================== |
|
this.getBigRandom = function (limit) { |
|
return new BigInteger(limit.bitLength(), rng) |
|
.mod(limit.subtract(BigInteger.ONE)) |
|
.add(BigInteger.ONE) |
|
; |
|
}; |
|
|
|
this.setNamedCurve = function(curveName) { |
|
this.ecparams = KJUR.crypto.ECParameterDB.getByName(curveName); |
|
this.prvKeyHex = null; |
|
this.pubKeyHex = null; |
|
this.curveName = curveName; |
|
} |
|
|
|
this.setPrivateKeyHex = function(prvKeyHex) { |
|
this.isPrivate = true; |
|
this.prvKeyHex = prvKeyHex; |
|
} |
|
|
|
this.setPublicKeyHex = function(pubKeyHex) { |
|
this.isPublic = true; |
|
this.pubKeyHex = pubKeyHex; |
|
} |
|
|
|
/** |
|
* generate a EC key pair |
|
* @name generateKeyPairHex |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @return {Array} associative array of hexadecimal string of private and public key |
|
* @since ecdsa-modified 1.0.1 |
|
* @example |
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'}); |
|
* var keypair = ec.generateKeyPairHex(); |
|
* var pubhex = keypair.ecpubhex; // hexadecimal string of EC private key (=d) |
|
* var prvhex = keypair.ecprvhex; // hexadecimal string of EC public key |
|
*/ |
|
this.generateKeyPairHex = function() { |
|
var biN = this.ecparams['n']; |
|
var biPrv = this.getBigRandom(biN); |
|
var epPub = this.ecparams['G'].multiply(biPrv); |
|
var biX = epPub.getX().toBigInteger(); |
|
var biY = epPub.getY().toBigInteger(); |
|
|
|
var charlen = this.ecparams['keylen'] / 4; |
|
var hPrv = ("0000000000" + biPrv.toString(16)).slice(- charlen); |
|
var hX = ("0000000000" + biX.toString(16)).slice(- charlen); |
|
var hY = ("0000000000" + biY.toString(16)).slice(- charlen); |
|
var hPub = "04" + hX + hY; |
|
|
|
this.setPrivateKeyHex(hPrv); |
|
this.setPublicKeyHex(hPub); |
|
return {'ecprvhex': hPrv, 'ecpubhex': hPub}; |
|
}; |
|
|
|
this.signWithMessageHash = function(hashHex) { |
|
return this.signHex(hashHex, this.prvKeyHex); |
|
}; |
|
|
|
/** |
|
* signing to message hash |
|
* @name signHex |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @param {String} hashHex hexadecimal string of hash value of signing message |
|
* @param {String} privHex hexadecimal string of EC private key |
|
* @return {String} hexadecimal string of ECDSA signature |
|
* @since ecdsa-modified 1.0.1 |
|
* @example |
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'}); |
|
* var sigValue = ec.signHex(hash, prvKey); |
|
*/ |
|
this.signHex = function (hashHex, privHex) { |
|
var d = new BigInteger(privHex, 16); |
|
var n = this.ecparams['n']; |
|
var e = new BigInteger(hashHex, 16); |
|
|
|
do { |
|
var k = this.getBigRandom(n); |
|
var G = this.ecparams['G']; |
|
var Q = G.multiply(k); |
|
var r = Q.getX().toBigInteger().mod(n); |
|
} while (r.compareTo(BigInteger.ZERO) <= 0); |
|
|
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); |
|
|
|
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(r, s); |
|
}; |
|
|
|
this.sign = function (hash, priv) { |
|
var d = priv; |
|
var n = this.ecparams['n']; |
|
var e = BigInteger.fromByteArrayUnsigned(hash); |
|
|
|
do { |
|
var k = this.getBigRandom(n); |
|
var G = this.ecparams['G']; |
|
var Q = G.multiply(k); |
|
var r = Q.getX().toBigInteger().mod(n); |
|
} while (r.compareTo(BigInteger.ZERO) <= 0); |
|
|
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); |
|
return this.serializeSig(r, s); |
|
}; |
|
|
|
this.verifyWithMessageHash = function(hashHex, sigHex) { |
|
return this.verifyHex(hashHex, sigHex, this.pubKeyHex); |
|
}; |
|
|
|
/** |
|
* verifying signature with message hash and public key |
|
* @name verifyHex |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @param {String} hashHex hexadecimal string of hash value of signing message |
|
* @param {String} sigHex hexadecimal string of signature value |
|
* @param {String} pubkeyHex hexadecimal string of public key |
|
* @return {Boolean} true if the signature is valid, otherwise false |
|
* @since ecdsa-modified 1.0.1 |
|
* @example |
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'}); |
|
* var result = ec.verifyHex(msgHashHex, sigHex, pubkeyHex); |
|
*/ |
|
this.verifyHex = function(hashHex, sigHex, pubkeyHex) { |
|
var r,s; |
|
|
|
var obj = KJUR.crypto.ECDSA.parseSigHex(sigHex); |
|
r = obj.r; |
|
s = obj.s; |
|
|
|
var Q; |
|
Q = ECPointFp.decodeFromHex(this.ecparams['curve'], pubkeyHex); |
|
var e = new BigInteger(hashHex, 16); |
|
|
|
return this.verifyRaw(e, r, s, Q); |
|
}; |
|
|
|
this.verify = function (hash, sig, pubkey) { |
|
var r,s; |
|
if (Bitcoin.Util.isArray(sig)) { |
|
var obj = this.parseSig(sig); |
|
r = obj.r; |
|
s = obj.s; |
|
} else if ("object" === typeof sig && sig.r && sig.s) { |
|
r = sig.r; |
|
s = sig.s; |
|
} else { |
|
throw "Invalid value for signature"; |
|
} |
|
|
|
var Q; |
|
if (pubkey instanceof ECPointFp) { |
|
Q = pubkey; |
|
} else if (Bitcoin.Util.isArray(pubkey)) { |
|
Q = ECPointFp.decodeFrom(this.ecparams['curve'], pubkey); |
|
} else { |
|
throw "Invalid format for pubkey value, must be byte array or ECPointFp"; |
|
} |
|
var e = BigInteger.fromByteArrayUnsigned(hash); |
|
|
|
return this.verifyRaw(e, r, s, Q); |
|
}; |
|
|
|
this.verifyRaw = function (e, r, s, Q) { |
|
var n = this.ecparams['n']; |
|
var G = this.ecparams['G']; |
|
|
|
if (r.compareTo(BigInteger.ONE) < 0 || |
|
r.compareTo(n) >= 0) |
|
return false; |
|
|
|
if (s.compareTo(BigInteger.ONE) < 0 || |
|
s.compareTo(n) >= 0) |
|
return false; |
|
|
|
var c = s.modInverse(n); |
|
|
|
var u1 = e.multiply(c).mod(n); |
|
var u2 = r.multiply(c).mod(n); |
|
|
|
// TODO(!!!): For some reason Shamir's trick isn't working with |
|
// signed message verification!? Probably an implementation |
|
// error! |
|
//var point = implShamirsTrick(G, u1, Q, u2); |
|
var point = G.multiply(u1).add(Q.multiply(u2)); |
|
|
|
var v = point.getX().toBigInteger().mod(n); |
|
|
|
return v.equals(r); |
|
}; |
|
|
|
/** |
|
* Serialize a signature into DER format. |
|
* |
|
* Takes two BigIntegers representing r and s and returns a byte array. |
|
*/ |
|
this.serializeSig = function (r, s) { |
|
var rBa = r.toByteArraySigned(); |
|
var sBa = s.toByteArraySigned(); |
|
|
|
var sequence = []; |
|
sequence.push(0x02); // INTEGER |
|
sequence.push(rBa.length); |
|
sequence = sequence.concat(rBa); |
|
|
|
sequence.push(0x02); // INTEGER |
|
sequence.push(sBa.length); |
|
sequence = sequence.concat(sBa); |
|
|
|
sequence.unshift(sequence.length); |
|
sequence.unshift(0x30); // SEQUENCE |
|
return sequence; |
|
}; |
|
|
|
/** |
|
* Parses a byte array containing a DER-encoded signature. |
|
* |
|
* This function will return an object of the form: |
|
* |
|
* { |
|
* r: BigInteger, |
|
* s: BigInteger |
|
* } |
|
*/ |
|
this.parseSig = function (sig) { |
|
var cursor; |
|
if (sig[0] != 0x30) |
|
throw new Error("Signature not a valid DERSequence"); |
|
|
|
cursor = 2; |
|
if (sig[cursor] != 0x02) |
|
throw new Error("First element in signature must be a DERInteger");; |
|
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]); |
|
|
|
cursor += 2+sig[cursor+1]; |
|
if (sig[cursor] != 0x02) |
|
throw new Error("Second element in signature must be a DERInteger"); |
|
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]); |
|
|
|
cursor += 2+sig[cursor+1]; |
|
|
|
//if (cursor != sig.length) |
|
// throw new Error("Extra bytes in signature"); |
|
|
|
var r = BigInteger.fromByteArrayUnsigned(rBa); |
|
var s = BigInteger.fromByteArrayUnsigned(sBa); |
|
|
|
return {r: r, s: s}; |
|
}; |
|
|
|
this.parseSigCompact = function (sig) { |
|
if (sig.length !== 65) { |
|
throw "Signature has the wrong length"; |
|
} |
|
|
|
// Signature is prefixed with a type byte storing three bits of |
|
// information. |
|
var i = sig[0] - 27; |
|
if (i < 0 || i > 7) { |
|
throw "Invalid signature type"; |
|
} |
|
|
|
var n = this.ecparams['n']; |
|
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n); |
|
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n); |
|
|
|
return {r: r, s: s, i: i}; |
|
}; |
|
|
|
/* |
|
* Recover a public key from a signature. |
|
* |
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public |
|
* Key Recovery Operation". |
|
* |
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf |
|
*/ |
|
/* |
|
recoverPubKey: function (r, s, hash, i) { |
|
// The recovery parameter i has two bits. |
|
i = i & 3; |
|
|
|
// The less significant bit specifies whether the y coordinate |
|
// of the compressed point is even or not. |
|
var isYEven = i & 1; |
|
|
|
// The more significant bit specifies whether we should use the |
|
// first or second candidate key. |
|
var isSecondKey = i >> 1; |
|
|
|
var n = this.ecparams['n']; |
|
var G = this.ecparams['G']; |
|
var curve = this.ecparams['curve']; |
|
var p = curve.getQ(); |
|
var a = curve.getA().toBigInteger(); |
|
var b = curve.getB().toBigInteger(); |
|
|
|
// We precalculate (p + 1) / 4 where p is if the field order |
|
if (!P_OVER_FOUR) { |
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4)); |
|
} |
|
|
|
// 1.1 Compute x |
|
var x = isSecondKey ? r.add(n) : r; |
|
|
|
// 1.3 Convert x to point |
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p); |
|
var beta = alpha.modPow(P_OVER_FOUR, p); |
|
|
|
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2); |
|
// If beta is even, but y isn't or vice versa, then convert it, |
|
// otherwise we're done and y == beta. |
|
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta); |
|
|
|
// 1.4 Check that nR is at infinity |
|
var R = new ECPointFp(curve, |
|
curve.fromBigInteger(x), |
|
curve.fromBigInteger(y)); |
|
R.validate(); |
|
|
|
// 1.5 Compute e from M |
|
var e = BigInteger.fromByteArrayUnsigned(hash); |
|
var eNeg = BigInteger.ZERO.subtract(e).mod(n); |
|
|
|
// 1.6 Compute Q = r^-1 (sR - eG) |
|
var rInv = r.modInverse(n); |
|
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv); |
|
|
|
Q.validate(); |
|
if (!this.verifyRaw(e, r, s, Q)) { |
|
throw "Pubkey recovery unsuccessful"; |
|
} |
|
|
|
var pubKey = new Bitcoin.ECKey(); |
|
pubKey.pub = Q; |
|
return pubKey; |
|
}, |
|
*/ |
|
|
|
/* |
|
* Calculate pubkey extraction parameter. |
|
* |
|
* When extracting a pubkey from a signature, we have to |
|
* distinguish four different cases. Rather than putting this |
|
* burden on the verifier, Bitcoin includes a 2-bit value with the |
|
* signature. |
|
* |
|
* This function simply tries all four cases and returns the value |
|
* that resulted in a successful pubkey recovery. |
|
*/ |
|
/* |
|
calcPubkeyRecoveryParam: function (address, r, s, hash) { |
|
for (var i = 0; i < 4; i++) { |
|
try { |
|
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i); |
|
if (pubkey.getBitcoinAddress().toString() == address) { |
|
return i; |
|
} |
|
} catch (e) {} |
|
} |
|
throw "Unable to find valid recovery factor"; |
|
} |
|
*/ |
|
|
|
if (params !== undefined) { |
|
if (params['curve'] !== undefined) { |
|
this.curveName = params['curve']; |
|
} |
|
} |
|
if (this.curveName === undefined) this.curveName = curveName; |
|
this.setNamedCurve(this.curveName); |
|
if (params !== undefined) { |
|
if (params['prv'] !== undefined) this.setPrivateKeyHex(params['prv']); |
|
if (params['pub'] !== undefined) this.setPublicKeyHex(params['pub']); |
|
} |
|
}; |
|
|
|
/** |
|
* parse ASN.1 DER encoded ECDSA signature |
|
* @name parseSigHex |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {String} sigHex hexadecimal string of ECDSA signature value |
|
* @return {Array} associative array of signature field r and s of BigInteger |
|
* @since ecdsa-modified 1.0.1 |
|
* @example |
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'}); |
|
* var sig = ec.parseSigHex('30...'); |
|
* var biR = sig.r; // BigInteger object for 'r' field of signature. |
|
* var biS = sig.s; // BigInteger object for 's' field of signature. |
|
*/ |
|
KJUR.crypto.ECDSA.parseSigHex = function(sigHex) { |
|
var p = KJUR.crypto.ECDSA.parseSigHexInHexRS(sigHex); |
|
var biR = new BigInteger(p.r, 16); |
|
var biS = new BigInteger(p.s, 16); |
|
|
|
return {'r': biR, 's': biS}; |
|
}; |
|
|
|
/** |
|
* parse ASN.1 DER encoded ECDSA signature |
|
* @name parseSigHexInHexRS |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {String} sigHex hexadecimal string of ECDSA signature value |
|
* @return {Array} associative array of signature field r and s in hexadecimal |
|
* @since ecdsa-modified 1.0.3 |
|
* @example |
|
* var ec = new KJUR.crypto.ECDSA({'curve': 'secp256r1'}); |
|
* var sig = ec.parseSigHexInHexRS('30...'); |
|
* var hR = sig.r; // hexadecimal string for 'r' field of signature. |
|
* var hS = sig.s; // hexadecimal string for 's' field of signature. |
|
*/ |
|
KJUR.crypto.ECDSA.parseSigHexInHexRS = function(sigHex) { |
|
// 1. ASN.1 Sequence Check |
|
if (sigHex.substr(0, 2) != "30") |
|
throw "signature is not a ASN.1 sequence"; |
|
|
|
// 2. Items of ASN.1 Sequence Check |
|
var a = ASN1HEX.getPosArrayOfChildren_AtObj(sigHex, 0); |
|
if (a.length != 2) |
|
throw "number of signature ASN.1 sequence elements seem wrong"; |
|
|
|
// 3. Integer check |
|
var iTLV1 = a[0]; |
|
var iTLV2 = a[1]; |
|
if (sigHex.substr(iTLV1, 2) != "02") |
|
throw "1st item of sequene of signature is not ASN.1 integer"; |
|
if (sigHex.substr(iTLV2, 2) != "02") |
|
throw "2nd item of sequene of signature is not ASN.1 integer"; |
|
|
|
// 4. getting value |
|
var hR = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV1); |
|
var hS = ASN1HEX.getHexOfV_AtObj(sigHex, iTLV2); |
|
|
|
return {'r': hR, 's': hS}; |
|
}; |
|
|
|
/** |
|
* convert hexadecimal ASN.1 encoded signature to concatinated signature |
|
* @name asn1SigToConcatSig |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {String} asn1Hex hexadecimal string of ASN.1 encoded ECDSA signature value |
|
* @return {String} r-s concatinated format of ECDSA signature value |
|
* @since ecdsa-modified 1.0.3 |
|
*/ |
|
KJUR.crypto.ECDSA.asn1SigToConcatSig = function(asn1Sig) { |
|
var pSig = KJUR.crypto.ECDSA.parseSigHexInHexRS(asn1Sig); |
|
var hR = pSig.r; |
|
var hS = pSig.s; |
|
|
|
if (hR.substr(0, 2) == "00" && (((hR.length / 2) * 8) % (16 * 8)) == 8) |
|
hR = hR.substr(2); |
|
|
|
if (hS.substr(0, 2) == "00" && (((hS.length / 2) * 8) % (16 * 8)) == 8) |
|
hS = hS.substr(2); |
|
|
|
if ((((hR.length / 2) * 8) % (16 * 8)) != 0) |
|
throw "unknown ECDSA sig r length error"; |
|
|
|
if ((((hS.length / 2) * 8) % (16 * 8)) != 0) |
|
throw "unknown ECDSA sig s length error"; |
|
|
|
return hR + hS; |
|
}; |
|
|
|
/** |
|
* convert hexadecimal concatinated signature to ASN.1 encoded signature |
|
* @name concatSigToASN1Sig |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {String} concatSig r-s concatinated format of ECDSA signature value |
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value |
|
* @since ecdsa-modified 1.0.3 |
|
*/ |
|
KJUR.crypto.ECDSA.concatSigToASN1Sig = function(concatSig) { |
|
if ((((concatSig.length / 2) * 8) % (16 * 8)) != 0) |
|
throw "unknown ECDSA concatinated r-s sig length error"; |
|
|
|
var hR = concatSig.substr(0, concatSig.length / 2); |
|
var hS = concatSig.substr(concatSig.length / 2); |
|
return KJUR.crypto.ECDSA.hexRSSigToASN1Sig(hR, hS); |
|
}; |
|
|
|
/** |
|
* convert hexadecimal R and S value of signature to ASN.1 encoded signature |
|
* @name hexRSSigToASN1Sig |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {String} hR hexadecimal string of R field of ECDSA signature value |
|
* @param {String} hS hexadecimal string of S field of ECDSA signature value |
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value |
|
* @since ecdsa-modified 1.0.3 |
|
*/ |
|
KJUR.crypto.ECDSA.hexRSSigToASN1Sig = function(hR, hS) { |
|
var biR = new BigInteger(hR, 16); |
|
var biS = new BigInteger(hS, 16); |
|
return KJUR.crypto.ECDSA.biRSSigToASN1Sig(biR, biS); |
|
}; |
|
|
|
/** |
|
* convert R and S BigInteger object of signature to ASN.1 encoded signature |
|
* @name biRSSigToASN1Sig |
|
* @memberOf KJUR.crypto.ECDSA |
|
* @function |
|
* @static |
|
* @param {BigInteger} biR BigInteger object of R field of ECDSA signature value |
|
* @param {BigInteger} biS BIgInteger object of S field of ECDSA signature value |
|
* @return {String} hexadecimal string of ASN.1 encoded ECDSA signature value |
|
* @since ecdsa-modified 1.0.3 |
|
*/ |
|
KJUR.crypto.ECDSA.biRSSigToASN1Sig = function(biR, biS) { |
|
var derR = new KJUR.asn1.DERInteger({'bigint': biR}); |
|
var derS = new KJUR.asn1.DERInteger({'bigint': biS}); |
|
var derSeq = new KJUR.asn1.DERSequence({'array': [derR, derS]}); |
|
return derSeq.getEncodedHex(); |
|
}; |
|
|
|
|