mirror of https://github.com/Kozea/pygal.git
Florian Mounier
9 years ago
11 changed files with 199 additions and 9 deletions
@ -0,0 +1,72 @@ |
|||||||
|
from math import log, sqrt, pi |
||||||
|
try: |
||||||
|
from scipy import stats |
||||||
|
except ImportError: |
||||||
|
stats = None |
||||||
|
|
||||||
|
|
||||||
|
def erfinv(x, a=.147): |
||||||
|
"""Approximation of the inverse error function |
||||||
|
https://en.wikipedia.org/wiki/Error_function |
||||||
|
#Approximation_with_elementary_functions |
||||||
|
""" |
||||||
|
lnx = log(1 - x * x) |
||||||
|
part1 = (2 / (a * pi) + lnx / 2) |
||||||
|
part2 = lnx / a |
||||||
|
sgn = 1 if x > 0 else -1 |
||||||
|
return sgn * sqrt(sqrt(part1 * part1 - part2) - part1) |
||||||
|
|
||||||
|
|
||||||
|
def norm_ppf(x): |
||||||
|
if not 0 < x < 1: |
||||||
|
raise ValueError("Can't compute the percentage point for value %d" % x) |
||||||
|
return sqrt(2) * erfinv(2 * x - 1) |
||||||
|
|
||||||
|
|
||||||
|
def ppf(x, n): |
||||||
|
if stats: |
||||||
|
if n < 30: |
||||||
|
return stats.t.ppf(x, n) |
||||||
|
return stats.norm.ppf(x) |
||||||
|
else: |
||||||
|
if n < 30: |
||||||
|
# TODO: implement power series: |
||||||
|
# http://eprints.maths.ox.ac.uk/184/1/tdist.pdf |
||||||
|
raise ImportError( |
||||||
|
'You must have scipy installed to use t-student ' |
||||||
|
'when sample_size is below 30') |
||||||
|
return norm_ppf(x) |
||||||
|
|
||||||
|
# According to http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/ |
||||||
|
# BS704_Confidence_Intervals/BS704_Confidence_Intervals_print.html |
||||||
|
|
||||||
|
|
||||||
|
def confidence_interval_continuous( |
||||||
|
point_estimate, stddev, sample_size, confidence=.95, **kwargs): |
||||||
|
"""Continuous confidence interval from sample size and standard error""" |
||||||
|
alpha = ppf((confidence + 1) / 2, sample_size - 1) |
||||||
|
|
||||||
|
margin = stddev / sqrt(sample_size) |
||||||
|
return (point_estimate - alpha * margin, point_estimate + alpha * margin) |
||||||
|
|
||||||
|
|
||||||
|
def confidence_interval_dichotomous( |
||||||
|
point_estimate, sample_size, confidence=.95, bias=False, |
||||||
|
percentage=True, **kwargs): |
||||||
|
"""Dichotomous confidence interval from sample size and maybe a bias""" |
||||||
|
alpha = ppf((confidence + 1) / 2, sample_size - 1) |
||||||
|
p = point_estimate |
||||||
|
if percentage: |
||||||
|
p /= 100 |
||||||
|
|
||||||
|
margin = sqrt(p * (1 - p) / sample_size) |
||||||
|
if bias: |
||||||
|
margin += .5 / sample_size |
||||||
|
if percentage: |
||||||
|
margin *= 100 |
||||||
|
|
||||||
|
return (point_estimate - alpha * margin, point_estimate + alpha * margin) |
||||||
|
|
||||||
|
|
||||||
|
def confidence_interval_manual(point_estimate, low, high): |
||||||
|
return (low, high) |
Loading…
Reference in new issue