|
|
@ -23,6 +23,7 @@ TODO: Implement more interpolations (cosine, lagrange...) |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
|
""" |
|
|
|
from __future__ import division |
|
|
|
from __future__ import division |
|
|
|
|
|
|
|
from math import sin |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def quadratic_interpolate(x, y, precision=250): |
|
|
|
def quadratic_interpolate(x, y, precision=250): |
|
|
@ -124,6 +125,37 @@ def hermite_interpolate(x, y, precision=250): |
|
|
|
X = x[i] + s * delta_x[i] / precision |
|
|
|
X = x[i] + s * delta_x[i] / precision |
|
|
|
yield X, p(i, X) |
|
|
|
yield X, p(i, X) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def trigonometric_interpolate(x, y, precision=250): |
|
|
|
|
|
|
|
""" As per http://en.wikipedia.org/wiki/Trigonometric_interpolation""" |
|
|
|
|
|
|
|
n = len(x) - 1 |
|
|
|
|
|
|
|
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])] |
|
|
|
|
|
|
|
for i in range(n + 1): |
|
|
|
|
|
|
|
yield x[i], y[i] |
|
|
|
|
|
|
|
if i == n or delta_x[i] == 0: |
|
|
|
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for s in range(1, precision): |
|
|
|
|
|
|
|
X = x[i] + s * delta_x[i] / precision |
|
|
|
|
|
|
|
s = 0 |
|
|
|
|
|
|
|
for k in range(n + 1): |
|
|
|
|
|
|
|
p = 1 |
|
|
|
|
|
|
|
for m in range(n + 1): |
|
|
|
|
|
|
|
if m == k: |
|
|
|
|
|
|
|
continue |
|
|
|
|
|
|
|
p *= sin(0.5 * (X - x[m])) / sin(0.5 * (x[k] - x[m])) |
|
|
|
|
|
|
|
s += y[k] * p |
|
|
|
|
|
|
|
yield X, s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INTERPOLATIONS = { |
|
|
|
|
|
|
|
'quadratic': quadratic_interpolate, |
|
|
|
|
|
|
|
'cubic': cubic_interpolate, |
|
|
|
|
|
|
|
'hermite': hermite_interpolate, |
|
|
|
|
|
|
|
'trigonometric': trigonometric_interpolate |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
if __name__ == '__main__': |
|
|
|
from pygal import XY |
|
|
|
from pygal import XY |
|
|
|
points = [(.1, 7), (.3, -4), (.6, 10), (.9, 8), (1.4, 3), (1.7, 1)] |
|
|
|
points = [(.1, 7), (.3, -4), (.6, 10), (.9, 8), (1.4, 3), (1.7, 1)] |
|
|
|