|
|
|
@ -22,58 +22,79 @@ XY Line graph
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
from __future__ import division |
|
|
|
|
from pygal.util import compute_scale |
|
|
|
|
from pygal.util import compute_scale, cached_property |
|
|
|
|
from pygal.graph.line import Line |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class XY(Line): |
|
|
|
|
"""XY Line graph""" |
|
|
|
|
|
|
|
|
|
def _get_value(self, values, i): |
|
|
|
|
return 'x=%s, y=%s' % tuple(map(self._format, values[i])) |
|
|
|
|
|
|
|
|
|
def _compute(self): |
|
|
|
|
xvals = [val[0] |
|
|
|
|
@cached_property |
|
|
|
|
def xvals(self): |
|
|
|
|
return [val[0] |
|
|
|
|
for serie in self.all_series |
|
|
|
|
for val in serie.values |
|
|
|
|
if val[0] is not None] |
|
|
|
|
yvals = [val[1] |
|
|
|
|
|
|
|
|
|
@cached_property |
|
|
|
|
def yvals(self): |
|
|
|
|
return [val[1] |
|
|
|
|
for serie in self.series |
|
|
|
|
for val in serie.values |
|
|
|
|
if val[1] is not None] |
|
|
|
|
if xvals: |
|
|
|
|
xmin = min(xvals) |
|
|
|
|
xmax = max(xvals) |
|
|
|
|
rng = (xmax - xmin) |
|
|
|
|
|
|
|
|
|
def _has_data(self): |
|
|
|
|
"""Check if there is any data""" |
|
|
|
|
return sum( |
|
|
|
|
map(len, map(lambda s: s.safe_values, self.series))) != 0 and any(( |
|
|
|
|
sum(map(abs, self.xvals)) != 0, |
|
|
|
|
sum(map(abs, self.yvals)) != 0)) |
|
|
|
|
|
|
|
|
|
def _get_value(self, values, i): |
|
|
|
|
return 'x=%s, y=%s' % tuple(map(self._format, values[i])) |
|
|
|
|
|
|
|
|
|
def _compute(self): |
|
|
|
|
if self.xvals: |
|
|
|
|
xmin = min(self.xvals) |
|
|
|
|
xmax = max(self.xvals) |
|
|
|
|
xrng = (xmax - xmin) |
|
|
|
|
else: |
|
|
|
|
xrng = None |
|
|
|
|
|
|
|
|
|
if self.yvals: |
|
|
|
|
ymin = min(self.yvals) |
|
|
|
|
ymax = max(self.yvals) |
|
|
|
|
yrng = (ymax - ymin) |
|
|
|
|
else: |
|
|
|
|
rng = None |
|
|
|
|
yrng = None |
|
|
|
|
|
|
|
|
|
for serie in self.all_series: |
|
|
|
|
serie.points = serie.values |
|
|
|
|
if self.interpolate and rng: |
|
|
|
|
if self.interpolate and xrng: |
|
|
|
|
vals = zip(*sorted( |
|
|
|
|
filter(lambda t: None not in t, |
|
|
|
|
serie.points), key=lambda x: x[0])) |
|
|
|
|
serie.interpolated = self._interpolate( |
|
|
|
|
vals[1], vals[0], xy=True, xy_xmin=xmin, xy_rng=rng) |
|
|
|
|
vals[1], vals[0], xy=True, xy_xmin=xmin, xy_rng=xrng) |
|
|
|
|
|
|
|
|
|
if self.interpolate and rng: |
|
|
|
|
xvals = [val[0] |
|
|
|
|
if self.interpolate and xrng: |
|
|
|
|
self.xvals = [val[0] |
|
|
|
|
for serie in self.all_series |
|
|
|
|
for val in serie.interpolated] |
|
|
|
|
yvals = [val[1] |
|
|
|
|
self.yvals = [val[1] |
|
|
|
|
for serie in self.series |
|
|
|
|
for val in serie.interpolated] |
|
|
|
|
if xvals: |
|
|
|
|
xmin = min(xvals) |
|
|
|
|
xmax = max(xvals) |
|
|
|
|
rng = (xmax - xmin) |
|
|
|
|
if self.xvals: |
|
|
|
|
xmin = min(self.xvals) |
|
|
|
|
xmax = max(self.xvals) |
|
|
|
|
xrng = (xmax - xmin) |
|
|
|
|
else: |
|
|
|
|
rng = None |
|
|
|
|
xrng = None |
|
|
|
|
|
|
|
|
|
if rng: |
|
|
|
|
self._box.xmin, self._box.xmax = min(xvals), max(xvals) |
|
|
|
|
self._box.ymin, self._box.ymax = min(yvals), max(yvals) |
|
|
|
|
if xrng: |
|
|
|
|
self._box.xmin, self._box.xmax = min(self.xvals), max(self.xvals) |
|
|
|
|
if yrng: |
|
|
|
|
self._box.ymin, self._box.ymax = min(self.yvals), max(self.yvals) |
|
|
|
|
|
|
|
|
|
x_pos = compute_scale( |
|
|
|
|
self._box.xmin, self._box.xmax, self.logarithmic, self.order_min) |
|
|
|
|