You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
6.9 KiB
198 lines
6.9 KiB
"""USAGE: |
|
|
|
time python examples/test.py --input ~/Desktop/5min.mp4 -o output.mp4 |
|
time python examples/test.py --input ~/Desktop/5min.mp4 -l |
|
|
|
""" |
|
# import the necessary packages |
|
import numpy as np |
|
import argparse |
|
import imutils |
|
import time |
|
import cv2 |
|
import os |
|
|
|
# construct the argument parse and parse the arguments |
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-i", "--input", required=True, help="path to input video") |
|
ap.add_argument("-o", "--output", required=False, help="path to output video") |
|
ap.add_argument("-l", "--live", action='store_true', help="Show live detection") |
|
# ap.add_argument("-y", "--yolo", required=True, |
|
# help="base path to YOLO directory") |
|
ap.add_argument( |
|
"-c", |
|
"--confidence", |
|
type=float, |
|
default=0.5, |
|
help="minimum probability to filter weak detections", |
|
) |
|
ap.add_argument( |
|
"-t", |
|
"--threshold", |
|
type=float, |
|
default=0.3, |
|
help="threshold when applyong non-maxima suppression", |
|
) |
|
args = vars(ap.parse_args()) |
|
|
|
# load the COCO class labels our YOLO model was trained on |
|
# labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) |
|
labelsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.names" |
|
LABELS = open(labelsPath).read().strip().split("\n") |
|
|
|
# initialize a list of colors to represent each possible class label |
|
np.random.seed(42) |
|
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") |
|
|
|
# derive the paths to the YOLO weights and model configuration |
|
# weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) |
|
# configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) |
|
|
|
weightsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain_final.weights" |
|
configPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.cfg" |
|
|
|
# load our YOLO object detector trained on COCO dataset (80 classes) |
|
# and determine only the *output* layer names that we need from YOLO |
|
print("[INFO] loading YOLO from disk...") |
|
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) |
|
ln = net.getLayerNames() |
|
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
|
|
|
|
|
# initialize the video stream, pointer to output video file, and |
|
# frame dimensions |
|
vs = cv2.VideoCapture(args["input"]) |
|
writer = None |
|
(W, H) = (None, None) |
|
|
|
# try to determine the total number of frames in the video file |
|
try: |
|
prop = ( |
|
cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT |
|
) |
|
total = int(vs.get(prop)) |
|
print("[INFO] {} total frames in video".format(total)) |
|
|
|
# an error occurred while trying to determine the total |
|
# number of frames in the video file |
|
except: |
|
print("[INFO] could not determine # of frames in video") |
|
print("[INFO] no approx. completion time can be provided") |
|
total = -1 |
|
|
|
|
|
# loop over frames from the video file stream |
|
while True: |
|
# read the next frame from the file |
|
(grabbed, frame) = vs.read() |
|
|
|
# if the frame was not grabbed, then we have reached the end |
|
# of the stream |
|
if not grabbed: |
|
break |
|
|
|
# if the frame dimensions are empty, grab them |
|
if W is None or H is None: |
|
(H, W) = frame.shape[:2] |
|
|
|
# construct a blob from the input frame and then perform a forward |
|
# pass of the YOLO object detector, giving us our bounding boxes |
|
# and associated probabilities |
|
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) |
|
net.setInput(blob) |
|
start = time.time() |
|
layerOutputs = net.forward(ln) |
|
end = time.time() |
|
|
|
# initialize our lists of detected bounding boxes, confidences, |
|
# and class IDs, respectively |
|
boxes = [] |
|
confidences = [] |
|
classIDs = [] |
|
|
|
# loop over each of the layer outputs |
|
for output in layerOutputs: |
|
# loop over each of the detections |
|
for detection in output: |
|
# extract the class ID and confidence (i.e., probability) |
|
# of the current object detection |
|
scores = detection[5:] |
|
classID = np.argmax(scores) |
|
confidence = scores[classID] |
|
|
|
# filter out weak predictions by ensuring the detected |
|
# probability is greater than the minimum probability |
|
if confidence > args["confidence"]: |
|
# scale the bounding box coordinates back relative to |
|
# the size of the image, keeping in mind that YOLO |
|
# actually returns the center (x, y)-coordinates of |
|
# the bounding box followed by the boxes' width and |
|
# height |
|
box = detection[0:4] * np.array([W, H, W, H]) |
|
(centerX, centerY, width, height) = box.astype("int") |
|
|
|
# use the center (x, y)-coordinates to derive the top |
|
# and and left corner of the bounding box |
|
x = int(centerX - (width / 2)) |
|
y = int(centerY - (height / 2)) |
|
|
|
# update our list of bounding box coordinates, |
|
# confidences, and class IDs |
|
boxes.append([x, y, int(width), int(height)]) |
|
confidences.append(float(confidence)) |
|
classIDs.append(classID) |
|
|
|
# apply non-maxima suppression to suppress weak, overlapping |
|
# bounding boxes |
|
idxs = cv2.dnn.NMSBoxes( |
|
boxes, confidences, args["confidence"], args["threshold"] |
|
) |
|
|
|
# ensure at least one detection exists |
|
if len(idxs) > 0: |
|
# loop over the indexes we are keeping |
|
for i in idxs.flatten(): |
|
# extract the bounding box coordinates |
|
(x, y) = (boxes[i][0], boxes[i][1]) |
|
(w, h) = (boxes[i][2], boxes[i][3]) |
|
|
|
# draw a bounding box rectangle and label on the frame |
|
color = [int(c) for c in COLORS[classIDs[i]]] |
|
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) |
|
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) |
|
cv2.putText( |
|
frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2 |
|
) |
|
|
|
if args["live"]: |
|
cv2.imshow("Frame", frame) |
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
# if the `q` key was pressed, break from the loop |
|
if key == ord("q"): |
|
break |
|
|
|
if args["output"]: |
|
# check if the video writer is None |
|
if writer is None: |
|
# initialize our video writer |
|
fourcc = cv2.VideoWriter_fourcc(*"MJPG") |
|
writer = cv2.VideoWriter( |
|
args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True |
|
) |
|
|
|
# some information on processing single frame |
|
if total > 0: |
|
elap = end - start |
|
print("[INFO] single frame took {:.4f} seconds".format(elap)) |
|
print( |
|
"[INFO] estimated total time to finish: {:.4f}".format(elap * total) |
|
) |
|
|
|
# write the output frame to disk |
|
writer.write(frame) |
|
|
|
# release the file pointers |
|
print("[INFO] cleaning up...") |
|
writer.release() |
|
vs.release()
|
|
|