|
|
|
"""USAGE:
|
|
|
|
|
|
|
|
time python examples/test.py --input ~/Desktop/5min.mp4 -o output.mp4
|
|
|
|
time python examples/test.py --input ~/Desktop/5min.mp4 -l
|
|
|
|
|
|
|
|
"""
|
|
|
|
# import the necessary packages
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import imutils
|
|
|
|
import time
|
|
|
|
import cv2
|
|
|
|
import os
|
|
|
|
|
|
|
|
# construct the argument parse and parse the arguments
|
|
|
|
ap = argparse.ArgumentParser()
|
|
|
|
ap.add_argument("-i", "--input", required=True, help="path to input video")
|
|
|
|
ap.add_argument("-o", "--output", required=False, help="path to output video")
|
|
|
|
ap.add_argument("-l", "--live", action='store_true', help="Show live detection")
|
|
|
|
# ap.add_argument("-y", "--yolo", required=True,
|
|
|
|
# help="base path to YOLO directory")
|
|
|
|
ap.add_argument(
|
|
|
|
"-c",
|
|
|
|
"--confidence",
|
|
|
|
type=float,
|
|
|
|
default=0.5,
|
|
|
|
help="minimum probability to filter weak detections",
|
|
|
|
)
|
|
|
|
ap.add_argument(
|
|
|
|
"-t",
|
|
|
|
"--threshold",
|
|
|
|
type=float,
|
|
|
|
default=0.3,
|
|
|
|
help="threshold when applyong non-maxima suppression",
|
|
|
|
)
|
|
|
|
args = vars(ap.parse_args())
|
|
|
|
|
|
|
|
# load the COCO class labels our YOLO model was trained on
|
|
|
|
# labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
|
|
|
|
labelsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.names"
|
|
|
|
LABELS = open(labelsPath).read().strip().split("\n")
|
|
|
|
|
|
|
|
# initialize a list of colors to represent each possible class label
|
|
|
|
np.random.seed(42)
|
|
|
|
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
|
|
|
|
|
|
|
|
# derive the paths to the YOLO weights and model configuration
|
|
|
|
# weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
|
|
|
|
# configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
|
|
|
|
|
|
|
|
weightsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain_final.weights"
|
|
|
|
configPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.cfg"
|
|
|
|
|
|
|
|
# load our YOLO object detector trained on COCO dataset (80 classes)
|
|
|
|
# and determine only the *output* layer names that we need from YOLO
|
|
|
|
print("[INFO] loading YOLO from disk...")
|
|
|
|
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
|
|
|
|
ln = net.getLayerNames()
|
|
|
|
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
|
|
|
|
|
|
|
|
|
# initialize the video stream, pointer to output video file, and
|
|
|
|
# frame dimensions
|
|
|
|
vs = cv2.VideoCapture(args["input"])
|
|
|
|
writer = None
|
|
|
|
(W, H) = (None, None)
|
|
|
|
|
|
|
|
# try to determine the total number of frames in the video file
|
|
|
|
try:
|
|
|
|
prop = (
|
|
|
|
cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT
|
|
|
|
)
|
|
|
|
total = int(vs.get(prop))
|
|
|
|
print("[INFO] {} total frames in video".format(total))
|
|
|
|
|
|
|
|
# an error occurred while trying to determine the total
|
|
|
|
# number of frames in the video file
|
|
|
|
except:
|
|
|
|
print("[INFO] could not determine # of frames in video")
|
|
|
|
print("[INFO] no approx. completion time can be provided")
|
|
|
|
total = -1
|
|
|
|
|
|
|
|
|
|
|
|
# loop over frames from the video file stream
|
|
|
|
while True:
|
|
|
|
# read the next frame from the file
|
|
|
|
(grabbed, frame) = vs.read()
|
|
|
|
|
|
|
|
# if the frame was not grabbed, then we have reached the end
|
|
|
|
# of the stream
|
|
|
|
if not grabbed:
|
|
|
|
break
|
|
|
|
|
|
|
|
# if the frame dimensions are empty, grab them
|
|
|
|
if W is None or H is None:
|
|
|
|
(H, W) = frame.shape[:2]
|
|
|
|
|
|
|
|
# construct a blob from the input frame and then perform a forward
|
|
|
|
# pass of the YOLO object detector, giving us our bounding boxes
|
|
|
|
# and associated probabilities
|
|
|
|
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
|
|
|
|
net.setInput(blob)
|
|
|
|
start = time.time()
|
|
|
|
layerOutputs = net.forward(ln)
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
# initialize our lists of detected bounding boxes, confidences,
|
|
|
|
# and class IDs, respectively
|
|
|
|
boxes = []
|
|
|
|
confidences = []
|
|
|
|
classIDs = []
|
|
|
|
|
|
|
|
# loop over each of the layer outputs
|
|
|
|
for output in layerOutputs:
|
|
|
|
# loop over each of the detections
|
|
|
|
for detection in output:
|
|
|
|
# extract the class ID and confidence (i.e., probability)
|
|
|
|
# of the current object detection
|
|
|
|
scores = detection[5:]
|
|
|
|
classID = np.argmax(scores)
|
|
|
|
confidence = scores[classID]
|
|
|
|
|
|
|
|
# filter out weak predictions by ensuring the detected
|
|
|
|
# probability is greater than the minimum probability
|
|
|
|
if confidence > args["confidence"]:
|
|
|
|
# scale the bounding box coordinates back relative to
|
|
|
|
# the size of the image, keeping in mind that YOLO
|
|
|
|
# actually returns the center (x, y)-coordinates of
|
|
|
|
# the bounding box followed by the boxes' width and
|
|
|
|
# height
|
|
|
|
box = detection[0:4] * np.array([W, H, W, H])
|
|
|
|
(centerX, centerY, width, height) = box.astype("int")
|
|
|
|
|
|
|
|
# use the center (x, y)-coordinates to derive the top
|
|
|
|
# and and left corner of the bounding box
|
|
|
|
x = int(centerX - (width / 2))
|
|
|
|
y = int(centerY - (height / 2))
|
|
|
|
|
|
|
|
# update our list of bounding box coordinates,
|
|
|
|
# confidences, and class IDs
|
|
|
|
boxes.append([x, y, int(width), int(height)])
|
|
|
|
confidences.append(float(confidence))
|
|
|
|
classIDs.append(classID)
|
|
|
|
|
|
|
|
# apply non-maxima suppression to suppress weak, overlapping
|
|
|
|
# bounding boxes
|
|
|
|
idxs = cv2.dnn.NMSBoxes(
|
|
|
|
boxes, confidences, args["confidence"], args["threshold"]
|
|
|
|
)
|
|
|
|
|
|
|
|
# ensure at least one detection exists
|
|
|
|
if len(idxs) > 0:
|
|
|
|
# loop over the indexes we are keeping
|
|
|
|
for i in idxs.flatten():
|
|
|
|
# extract the bounding box coordinates
|
|
|
|
(x, y) = (boxes[i][0], boxes[i][1])
|
|
|
|
(w, h) = (boxes[i][2], boxes[i][3])
|
|
|
|
|
|
|
|
# draw a bounding box rectangle and label on the frame
|
|
|
|
color = [int(c) for c in COLORS[classIDs[i]]]
|
|
|
|
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
|
|
|
|
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
|
|
|
|
cv2.putText(
|
|
|
|
frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2
|
|
|
|
)
|
|
|
|
|
|
|
|
if args["live"]:
|
|
|
|
cv2.imshow("Frame", frame)
|
|
|
|
key = cv2.waitKey(1) & 0xFF
|
|
|
|
|
|
|
|
# if the `q` key was pressed, break from the loop
|
|
|
|
if key == ord("q"):
|
|
|
|
break
|
|
|
|
|
|
|
|
if args["output"]:
|
|
|
|
# check if the video writer is None
|
|
|
|
if writer is None:
|
|
|
|
# initialize our video writer
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
|
|
|
writer = cv2.VideoWriter(
|
|
|
|
args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True
|
|
|
|
)
|
|
|
|
|
|
|
|
# some information on processing single frame
|
|
|
|
if total > 0:
|
|
|
|
elap = end - start
|
|
|
|
print("[INFO] single frame took {:.4f} seconds".format(elap))
|
|
|
|
print(
|
|
|
|
"[INFO] estimated total time to finish: {:.4f}".format(elap * total)
|
|
|
|
)
|
|
|
|
|
|
|
|
# write the output frame to disk
|
|
|
|
writer.write(frame)
|
|
|
|
|
|
|
|
# release the file pointers
|
|
|
|
print("[INFO] cleaning up...")
|
|
|
|
writer.release()
|
|
|
|
vs.release()
|