sipp11
5 years ago
3 changed files with 299 additions and 101 deletions
@ -0,0 +1,109 @@ |
|||||||
|
"""USAGE |
||||||
|
python examples/yolo_obj_detector.py \ |
||||||
|
-c ~/dev/obj-tracking/yolov3.cfg \ |
||||||
|
-w ~/dev/obj-tracking/yolov3.weights \ |
||||||
|
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
||||||
|
-i ~/dev/obj-tracking/person.jpg |
||||||
|
|
||||||
|
python examples/yolo_obj_detector.py \ |
||||||
|
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ |
||||||
|
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ |
||||||
|
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ |
||||||
|
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg |
||||||
|
""" |
||||||
|
import cv2 |
||||||
|
import argparse |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
ap = argparse.ArgumentParser() |
||||||
|
ap.add_argument("-i", "--image", required=True, help="path to input image") |
||||||
|
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
||||||
|
ap.add_argument( |
||||||
|
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
||||||
|
) |
||||||
|
ap.add_argument( |
||||||
|
"-cl", "--classes", required=True, help="path to text file containing class names" |
||||||
|
) |
||||||
|
args = ap.parse_args() |
||||||
|
|
||||||
|
|
||||||
|
def get_output_layers(net): |
||||||
|
layer_names = net.getLayerNames() |
||||||
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||||
|
return output_layers |
||||||
|
|
||||||
|
|
||||||
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
||||||
|
label = str(classes[class_id]) |
||||||
|
color = COLORS[class_id] |
||||||
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
||||||
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
||||||
|
|
||||||
|
image = cv2.imread(args.image) |
||||||
|
|
||||||
|
Width = image.shape[1] |
||||||
|
Height = image.shape[0] |
||||||
|
scale = 0.00392 |
||||||
|
|
||||||
|
classes = None |
||||||
|
|
||||||
|
with open(args.classes, "r") as f: |
||||||
|
classes = [line.strip() for line in f.readlines()] |
||||||
|
|
||||||
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
||||||
|
|
||||||
|
net = cv2.dnn.readNet(args.weights, args.config) |
||||||
|
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) |
||||||
|
|
||||||
|
net.setInput(blob) |
||||||
|
|
||||||
|
outs = net.forward(get_output_layers(net)) |
||||||
|
|
||||||
|
class_ids = [] |
||||||
|
confidences = [] |
||||||
|
boxes = [] |
||||||
|
conf_threshold = 0.5 |
||||||
|
nms_threshold = 0.4 |
||||||
|
|
||||||
|
|
||||||
|
for out in outs: |
||||||
|
for detection in out: |
||||||
|
scores = detection[5:] |
||||||
|
class_id = np.argmax(scores) |
||||||
|
confidence = scores[class_id] |
||||||
|
if confidence > 0.5: |
||||||
|
center_x = int(detection[0] * Width) |
||||||
|
center_y = int(detection[1] * Height) |
||||||
|
w = int(detection[2] * Width) |
||||||
|
h = int(detection[3] * Height) |
||||||
|
x = center_x - w / 2 |
||||||
|
y = center_y - h / 2 |
||||||
|
class_ids.append(class_id) |
||||||
|
confidences.append(float(confidence)) |
||||||
|
boxes.append([x, y, w, h]) |
||||||
|
|
||||||
|
|
||||||
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
||||||
|
|
||||||
|
for i in indices: |
||||||
|
i = i[0] |
||||||
|
box = boxes[i] |
||||||
|
x = box[0] |
||||||
|
y = box[1] |
||||||
|
w = box[2] |
||||||
|
h = box[3] |
||||||
|
draw_prediction( |
||||||
|
image, |
||||||
|
class_ids[i], |
||||||
|
confidences[i], |
||||||
|
round(x), |
||||||
|
round(y), |
||||||
|
round(x + w), |
||||||
|
round(y + h), |
||||||
|
) |
||||||
|
|
||||||
|
cv2.imshow("object detection", image) |
||||||
|
cv2.waitKey() |
||||||
|
|
||||||
|
cv2.imwrite("object-detection.jpg", image) |
||||||
|
cv2.destroyAllWindows() |
@ -1,109 +1,198 @@ |
|||||||
"""USAGE |
"""USAGE: |
||||||
python examples/yolo_obj_detector.py \ |
|
||||||
-c ~/dev/obj-tracking/yolov3.cfg \ |
time python examples/test.py --input ~/Desktop/5min.mp4 -o output.mp4 |
||||||
-w ~/dev/obj-tracking/yolov3.weights \ |
time python examples/test.py --input ~/Desktop/5min.mp4 -l |
||||||
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
|
||||||
-i ~/dev/obj-tracking/person.jpg |
|
||||||
|
|
||||||
python examples/yolo_obj_detector.py \ |
|
||||||
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ |
|
||||||
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ |
|
||||||
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ |
|
||||||
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg |
|
||||||
""" |
""" |
||||||
import cv2 |
# import the necessary packages |
||||||
import argparse |
|
||||||
import numpy as np |
import numpy as np |
||||||
|
import argparse |
||||||
|
import imutils |
||||||
|
import time |
||||||
|
import cv2 |
||||||
|
import os |
||||||
|
|
||||||
|
# construct the argument parse and parse the arguments |
||||||
ap = argparse.ArgumentParser() |
ap = argparse.ArgumentParser() |
||||||
ap.add_argument("-i", "--image", required=True, help="path to input image") |
ap.add_argument("-i", "--input", required=True, help="path to input video") |
||||||
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
ap.add_argument("-o", "--output", required=False, help="path to output video") |
||||||
|
ap.add_argument("-l", "--live", action='store_true', help="Show live detection") |
||||||
|
# ap.add_argument("-y", "--yolo", required=True, |
||||||
|
# help="base path to YOLO directory") |
||||||
ap.add_argument( |
ap.add_argument( |
||||||
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
"-c", |
||||||
|
"--confidence", |
||||||
|
type=float, |
||||||
|
default=0.5, |
||||||
|
help="minimum probability to filter weak detections", |
||||||
) |
) |
||||||
ap.add_argument( |
ap.add_argument( |
||||||
"-cl", "--classes", required=True, help="path to text file containing class names" |
"-t", |
||||||
|
"--threshold", |
||||||
|
type=float, |
||||||
|
default=0.3, |
||||||
|
help="threshold when applyong non-maxima suppression", |
||||||
) |
) |
||||||
args = ap.parse_args() |
args = vars(ap.parse_args()) |
||||||
|
|
||||||
|
# load the COCO class labels our YOLO model was trained on |
||||||
def get_output_layers(net): |
# labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) |
||||||
layer_names = net.getLayerNames() |
labelsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.names" |
||||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
LABELS = open(labelsPath).read().strip().split("\n") |
||||||
return output_layers |
|
||||||
|
# initialize a list of colors to represent each possible class label |
||||||
|
np.random.seed(42) |
||||||
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") |
||||||
label = str(classes[class_id]) |
|
||||||
color = COLORS[class_id] |
# derive the paths to the YOLO weights and model configuration |
||||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
# weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) |
||||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
# configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) |
||||||
|
|
||||||
image = cv2.imread(args.image) |
weightsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain_final.weights" |
||||||
|
configPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.cfg" |
||||||
Width = image.shape[1] |
|
||||||
Height = image.shape[0] |
# load our YOLO object detector trained on COCO dataset (80 classes) |
||||||
scale = 0.00392 |
# and determine only the *output* layer names that we need from YOLO |
||||||
|
print("[INFO] loading YOLO from disk...") |
||||||
classes = None |
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) |
||||||
|
ln = net.getLayerNames() |
||||||
with open(args.classes, "r") as f: |
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||||
classes = [line.strip() for line in f.readlines()] |
|
||||||
|
|
||||||
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
# initialize the video stream, pointer to output video file, and |
||||||
|
# frame dimensions |
||||||
net = cv2.dnn.readNet(args.weights, args.config) |
vs = cv2.VideoCapture(args["input"]) |
||||||
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) |
writer = None |
||||||
|
(W, H) = (None, None) |
||||||
|
|
||||||
|
# try to determine the total number of frames in the video file |
||||||
|
try: |
||||||
|
prop = ( |
||||||
|
cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT |
||||||
|
) |
||||||
|
total = int(vs.get(prop)) |
||||||
|
print("[INFO] {} total frames in video".format(total)) |
||||||
|
|
||||||
|
# an error occurred while trying to determine the total |
||||||
|
# number of frames in the video file |
||||||
|
except: |
||||||
|
print("[INFO] could not determine # of frames in video") |
||||||
|
print("[INFO] no approx. completion time can be provided") |
||||||
|
total = -1 |
||||||
|
|
||||||
|
|
||||||
|
# loop over frames from the video file stream |
||||||
|
while True: |
||||||
|
# read the next frame from the file |
||||||
|
(grabbed, frame) = vs.read() |
||||||
|
|
||||||
|
# if the frame was not grabbed, then we have reached the end |
||||||
|
# of the stream |
||||||
|
if not grabbed: |
||||||
|
break |
||||||
|
|
||||||
|
# if the frame dimensions are empty, grab them |
||||||
|
if W is None or H is None: |
||||||
|
(H, W) = frame.shape[:2] |
||||||
|
|
||||||
|
# construct a blob from the input frame and then perform a forward |
||||||
|
# pass of the YOLO object detector, giving us our bounding boxes |
||||||
|
# and associated probabilities |
||||||
|
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) |
||||||
net.setInput(blob) |
net.setInput(blob) |
||||||
|
start = time.time() |
||||||
|
layerOutputs = net.forward(ln) |
||||||
|
end = time.time() |
||||||
|
|
||||||
outs = net.forward(get_output_layers(net)) |
# initialize our lists of detected bounding boxes, confidences, |
||||||
|
# and class IDs, respectively |
||||||
class_ids = [] |
|
||||||
confidences = [] |
|
||||||
boxes = [] |
boxes = [] |
||||||
conf_threshold = 0.5 |
confidences = [] |
||||||
nms_threshold = 0.4 |
classIDs = [] |
||||||
|
|
||||||
|
# loop over each of the layer outputs |
||||||
for out in outs: |
for output in layerOutputs: |
||||||
for detection in out: |
# loop over each of the detections |
||||||
|
for detection in output: |
||||||
|
# extract the class ID and confidence (i.e., probability) |
||||||
|
# of the current object detection |
||||||
scores = detection[5:] |
scores = detection[5:] |
||||||
class_id = np.argmax(scores) |
classID = np.argmax(scores) |
||||||
confidence = scores[class_id] |
confidence = scores[classID] |
||||||
if confidence > 0.5: |
|
||||||
center_x = int(detection[0] * Width) |
# filter out weak predictions by ensuring the detected |
||||||
center_y = int(detection[1] * Height) |
# probability is greater than the minimum probability |
||||||
w = int(detection[2] * Width) |
if confidence > args["confidence"]: |
||||||
h = int(detection[3] * Height) |
# scale the bounding box coordinates back relative to |
||||||
x = center_x - w / 2 |
# the size of the image, keeping in mind that YOLO |
||||||
y = center_y - h / 2 |
# actually returns the center (x, y)-coordinates of |
||||||
class_ids.append(class_id) |
# the bounding box followed by the boxes' width and |
||||||
|
# height |
||||||
|
box = detection[0:4] * np.array([W, H, W, H]) |
||||||
|
(centerX, centerY, width, height) = box.astype("int") |
||||||
|
|
||||||
|
# use the center (x, y)-coordinates to derive the top |
||||||
|
# and and left corner of the bounding box |
||||||
|
x = int(centerX - (width / 2)) |
||||||
|
y = int(centerY - (height / 2)) |
||||||
|
|
||||||
|
# update our list of bounding box coordinates, |
||||||
|
# confidences, and class IDs |
||||||
|
boxes.append([x, y, int(width), int(height)]) |
||||||
confidences.append(float(confidence)) |
confidences.append(float(confidence)) |
||||||
boxes.append([x, y, w, h]) |
classIDs.append(classID) |
||||||
|
|
||||||
|
# apply non-maxima suppression to suppress weak, overlapping |
||||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
# bounding boxes |
||||||
|
idxs = cv2.dnn.NMSBoxes( |
||||||
for i in indices: |
boxes, confidences, args["confidence"], args["threshold"] |
||||||
i = i[0] |
) |
||||||
box = boxes[i] |
|
||||||
x = box[0] |
# ensure at least one detection exists |
||||||
y = box[1] |
if len(idxs) > 0: |
||||||
w = box[2] |
# loop over the indexes we are keeping |
||||||
h = box[3] |
for i in idxs.flatten(): |
||||||
draw_prediction( |
# extract the bounding box coordinates |
||||||
image, |
(x, y) = (boxes[i][0], boxes[i][1]) |
||||||
class_ids[i], |
(w, h) = (boxes[i][2], boxes[i][3]) |
||||||
confidences[i], |
|
||||||
round(x), |
# draw a bounding box rectangle and label on the frame |
||||||
round(y), |
color = [int(c) for c in COLORS[classIDs[i]]] |
||||||
round(x + w), |
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) |
||||||
round(y + h), |
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) |
||||||
|
cv2.putText( |
||||||
|
frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2 |
||||||
|
) |
||||||
|
|
||||||
|
if args["live"]: |
||||||
|
cv2.imshow("Frame", frame) |
||||||
|
key = cv2.waitKey(1) & 0xFF |
||||||
|
|
||||||
|
# if the `q` key was pressed, break from the loop |
||||||
|
if key == ord("q"): |
||||||
|
break |
||||||
|
|
||||||
|
if args["output"]: |
||||||
|
# check if the video writer is None |
||||||
|
if writer is None: |
||||||
|
# initialize our video writer |
||||||
|
fourcc = cv2.VideoWriter_fourcc(*"MJPG") |
||||||
|
writer = cv2.VideoWriter( |
||||||
|
args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True |
||||||
|
) |
||||||
|
|
||||||
|
# some information on processing single frame |
||||||
|
if total > 0: |
||||||
|
elap = end - start |
||||||
|
print("[INFO] single frame took {:.4f} seconds".format(elap)) |
||||||
|
print( |
||||||
|
"[INFO] estimated total time to finish: {:.4f}".format(elap * total) |
||||||
) |
) |
||||||
|
|
||||||
cv2.imshow("object detection", image) |
# write the output frame to disk |
||||||
cv2.waitKey() |
writer.write(frame) |
||||||
|
|
||||||
cv2.imwrite("object-detection.jpg", image) |
# release the file pointers |
||||||
cv2.destroyAllWindows() |
print("[INFO] cleaning up...") |
||||||
|
writer.release() |
||||||
|
vs.release() |
||||||
|
Loading…
Reference in new issue