Browse Source

YOLO img and vdo detector

dev
sipp11 5 years ago
parent
commit
1e025ece42
  1. 2
      README.md
  2. 109
      examples/yolo_img_obj_detector.py
  3. 277
      examples/yolo_obj_detector.py

2
README.md

@ -1,7 +1,7 @@
# Handai aerial detector # Handai aerial detector
We need to analyze road users in mid-block crossing area between Handai monorail station and handai hospital. We need to analyze road users in mid-block crossing area between Handai monorail station and Handai hospital.
## Output we need ## Output we need

109
examples/yolo_img_obj_detector.py

@ -0,0 +1,109 @@
"""USAGE
python examples/yolo_obj_detector.py \
-c ~/dev/obj-tracking/yolov3.cfg \
-w ~/dev/obj-tracking/yolov3.weights \
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \
-i ~/dev/obj-tracking/person.jpg
python examples/yolo_obj_detector.py \
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg
"""
import cv2
import argparse
import numpy as np
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-c", "--config", required=True, help="path to yolo config file")
ap.add_argument(
"-w", "--weights", required=True, help="path to yolo pre-trained weights"
)
ap.add_argument(
"-cl", "--classes", required=True, help="path to text file containing class names"
)
args = ap.parse_args()
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
image = cv2.imread(args.image)
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
classes = None
with open(args.classes, "r") as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet(args.weights, args.config)
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(
image,
class_ids[i],
confidences[i],
round(x),
round(y),
round(x + w),
round(y + h),
)
cv2.imshow("object detection", image)
cv2.waitKey()
cv2.imwrite("object-detection.jpg", image)
cv2.destroyAllWindows()

277
examples/yolo_obj_detector.py

@ -1,109 +1,198 @@
"""USAGE """USAGE:
python examples/yolo_obj_detector.py \
-c ~/dev/obj-tracking/yolov3.cfg \ time python examples/test.py --input ~/Desktop/5min.mp4 -o output.mp4
-w ~/dev/obj-tracking/yolov3.weights \ time python examples/test.py --input ~/Desktop/5min.mp4 -l
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \
-i ~/dev/obj-tracking/person.jpg
python examples/yolo_obj_detector.py \
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg
""" """
import cv2 # import the necessary packages
import argparse
import numpy as np import numpy as np
import argparse
import imutils
import time
import cv2
import os
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser() ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-i", "--input", required=True, help="path to input video")
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") ap.add_argument("-o", "--output", required=False, help="path to output video")
ap.add_argument("-l", "--live", action='store_true', help="Show live detection")
# ap.add_argument("-y", "--yolo", required=True,
# help="base path to YOLO directory")
ap.add_argument( ap.add_argument(
"-w", "--weights", required=True, help="path to yolo pre-trained weights" "-c",
"--confidence",
type=float,
default=0.5,
help="minimum probability to filter weak detections",
) )
ap.add_argument( ap.add_argument(
"-cl", "--classes", required=True, help="path to text file containing class names" "-t",
"--threshold",
type=float,
default=0.3,
help="threshold when applyong non-maxima suppression",
) )
args = ap.parse_args() args = vars(ap.parse_args())
# load the COCO class labels our YOLO model was trained on
def get_output_layers(net): # labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
layer_names = net.getLayerNames() labelsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.names"
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] LABELS = open(labelsPath).read().strip().split("\n")
return output_layers
# initialize a list of colors to represent each possible class label
np.random.seed(42)
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
label = str(classes[class_id])
color = COLORS[class_id] # derive the paths to the YOLO weights and model configuration
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) # weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
image = cv2.imread(args.image) weightsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain_final.weights"
configPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.cfg"
Width = image.shape[1]
Height = image.shape[0] # load our YOLO object detector trained on COCO dataset (80 classes)
scale = 0.00392 # and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
classes = None net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
with open(args.classes, "r") as f: ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) # initialize the video stream, pointer to output video file, and
# frame dimensions
net = cv2.dnn.readNet(args.weights, args.config) vs = cv2.VideoCapture(args["input"])
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) writer = None
(W, H) = (None, None)
net.setInput(blob)
# try to determine the total number of frames in the video file
try:
prop = (
cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT
)
total = int(vs.get(prop))
print("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
except:
print("[INFO] could not determine # of frames in video")
print("[INFO] no approx. completion time can be provided")
total = -1
# loop over frames from the video file stream
while True:
# read the next frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# if the frame dimensions are empty, grab them
if W is None or H is None:
(H, W) = frame.shape[:2]
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
outs = net.forward(get_output_layers(net)) # apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(
boxes, confidences, args["confidence"], args["threshold"]
)
class_ids = [] # ensure at least one detection exists
confidences = [] if len(idxs) > 0:
boxes = [] # loop over the indexes we are keeping
conf_threshold = 0.5 for i in idxs.flatten():
nms_threshold = 0.4 # extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(
frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2
)
if args["live"]:
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
if args["output"]:
# check if the video writer is None
if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(
args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True
)
for out in outs: # some information on processing single frame
for detection in out: if total > 0:
scores = detection[5:] elap = end - start
class_id = np.argmax(scores) print("[INFO] single frame took {:.4f} seconds".format(elap))
confidence = scores[class_id] print(
if confidence > 0.5: "[INFO] estimated total time to finish: {:.4f}".format(elap * total)
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(
image,
class_ids[i],
confidences[i],
round(x),
round(y),
round(x + w),
round(y + h),
) )
cv2.imshow("object detection", image) # write the output frame to disk
cv2.waitKey() writer.write(frame)
cv2.imwrite("object-detection.jpg", image) # release the file pointers
cv2.destroyAllWindows() print("[INFO] cleaning up...")
writer.release()
vs.release()

Loading…
Cancel
Save