sipp11
5 years ago
3 changed files with 299 additions and 101 deletions
@ -0,0 +1,109 @@
|
||||
"""USAGE |
||||
python examples/yolo_obj_detector.py \ |
||||
-c ~/dev/obj-tracking/yolov3.cfg \ |
||||
-w ~/dev/obj-tracking/yolov3.weights \ |
||||
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
||||
-i ~/dev/obj-tracking/person.jpg |
||||
|
||||
python examples/yolo_obj_detector.py \ |
||||
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ |
||||
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ |
||||
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ |
||||
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg |
||||
""" |
||||
import cv2 |
||||
import argparse |
||||
import numpy as np |
||||
|
||||
ap = argparse.ArgumentParser() |
||||
ap.add_argument("-i", "--image", required=True, help="path to input image") |
||||
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
||||
ap.add_argument( |
||||
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
||||
) |
||||
ap.add_argument( |
||||
"-cl", "--classes", required=True, help="path to text file containing class names" |
||||
) |
||||
args = ap.parse_args() |
||||
|
||||
|
||||
def get_output_layers(net): |
||||
layer_names = net.getLayerNames() |
||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||
return output_layers |
||||
|
||||
|
||||
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
||||
label = str(classes[class_id]) |
||||
color = COLORS[class_id] |
||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
||||
|
||||
image = cv2.imread(args.image) |
||||
|
||||
Width = image.shape[1] |
||||
Height = image.shape[0] |
||||
scale = 0.00392 |
||||
|
||||
classes = None |
||||
|
||||
with open(args.classes, "r") as f: |
||||
classes = [line.strip() for line in f.readlines()] |
||||
|
||||
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
||||
|
||||
net = cv2.dnn.readNet(args.weights, args.config) |
||||
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) |
||||
|
||||
net.setInput(blob) |
||||
|
||||
outs = net.forward(get_output_layers(net)) |
||||
|
||||
class_ids = [] |
||||
confidences = [] |
||||
boxes = [] |
||||
conf_threshold = 0.5 |
||||
nms_threshold = 0.4 |
||||
|
||||
|
||||
for out in outs: |
||||
for detection in out: |
||||
scores = detection[5:] |
||||
class_id = np.argmax(scores) |
||||
confidence = scores[class_id] |
||||
if confidence > 0.5: |
||||
center_x = int(detection[0] * Width) |
||||
center_y = int(detection[1] * Height) |
||||
w = int(detection[2] * Width) |
||||
h = int(detection[3] * Height) |
||||
x = center_x - w / 2 |
||||
y = center_y - h / 2 |
||||
class_ids.append(class_id) |
||||
confidences.append(float(confidence)) |
||||
boxes.append([x, y, w, h]) |
||||
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
||||
|
||||
for i in indices: |
||||
i = i[0] |
||||
box = boxes[i] |
||||
x = box[0] |
||||
y = box[1] |
||||
w = box[2] |
||||
h = box[3] |
||||
draw_prediction( |
||||
image, |
||||
class_ids[i], |
||||
confidences[i], |
||||
round(x), |
||||
round(y), |
||||
round(x + w), |
||||
round(y + h), |
||||
) |
||||
|
||||
cv2.imshow("object detection", image) |
||||
cv2.waitKey() |
||||
|
||||
cv2.imwrite("object-detection.jpg", image) |
||||
cv2.destroyAllWindows() |
@ -1,109 +1,198 @@
|
||||
"""USAGE |
||||
python examples/yolo_obj_detector.py \ |
||||
-c ~/dev/obj-tracking/yolov3.cfg \ |
||||
-w ~/dev/obj-tracking/yolov3.weights \ |
||||
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
||||
-i ~/dev/obj-tracking/person.jpg |
||||
|
||||
python examples/yolo_obj_detector.py \ |
||||
-c ~/syncthing/dropbox/tracking-obj/mytrain.cfg \ |
||||
-w ~/syncthing/dropbox/tracking-obj/mytrain_final.weights \ |
||||
-cl ~/syncthing/dropbox/tracking-obj/mytrain.names \ |
||||
-i /media/sipp11/500BUP/handai_photos/test/6294.jpg |
||||
"""USAGE: |
||||
|
||||
time python examples/test.py --input ~/Desktop/5min.mp4 -o output.mp4 |
||||
time python examples/test.py --input ~/Desktop/5min.mp4 -l |
||||
|
||||
""" |
||||
import cv2 |
||||
import argparse |
||||
# import the necessary packages |
||||
import numpy as np |
||||
import argparse |
||||
import imutils |
||||
import time |
||||
import cv2 |
||||
import os |
||||
|
||||
# construct the argument parse and parse the arguments |
||||
ap = argparse.ArgumentParser() |
||||
ap.add_argument("-i", "--image", required=True, help="path to input image") |
||||
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
||||
ap.add_argument("-i", "--input", required=True, help="path to input video") |
||||
ap.add_argument("-o", "--output", required=False, help="path to output video") |
||||
ap.add_argument("-l", "--live", action='store_true', help="Show live detection") |
||||
# ap.add_argument("-y", "--yolo", required=True, |
||||
# help="base path to YOLO directory") |
||||
ap.add_argument( |
||||
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
||||
"-c", |
||||
"--confidence", |
||||
type=float, |
||||
default=0.5, |
||||
help="minimum probability to filter weak detections", |
||||
) |
||||
ap.add_argument( |
||||
"-cl", "--classes", required=True, help="path to text file containing class names" |
||||
"-t", |
||||
"--threshold", |
||||
type=float, |
||||
default=0.3, |
||||
help="threshold when applyong non-maxima suppression", |
||||
) |
||||
args = ap.parse_args() |
||||
|
||||
|
||||
def get_output_layers(net): |
||||
layer_names = net.getLayerNames() |
||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||
return output_layers |
||||
|
||||
|
||||
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
||||
label = str(classes[class_id]) |
||||
color = COLORS[class_id] |
||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
||||
|
||||
image = cv2.imread(args.image) |
||||
|
||||
Width = image.shape[1] |
||||
Height = image.shape[0] |
||||
scale = 0.00392 |
||||
|
||||
classes = None |
||||
|
||||
with open(args.classes, "r") as f: |
||||
classes = [line.strip() for line in f.readlines()] |
||||
|
||||
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
||||
|
||||
net = cv2.dnn.readNet(args.weights, args.config) |
||||
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False) |
||||
|
||||
net.setInput(blob) |
||||
args = vars(ap.parse_args()) |
||||
|
||||
# load the COCO class labels our YOLO model was trained on |
||||
# labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) |
||||
labelsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.names" |
||||
LABELS = open(labelsPath).read().strip().split("\n") |
||||
|
||||
# initialize a list of colors to represent each possible class label |
||||
np.random.seed(42) |
||||
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") |
||||
|
||||
# derive the paths to the YOLO weights and model configuration |
||||
# weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) |
||||
# configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) |
||||
|
||||
weightsPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain_final.weights" |
||||
configPath = "/home/sipp11/syncthing/dropbox/tracking-obj/mytrain.cfg" |
||||
|
||||
# load our YOLO object detector trained on COCO dataset (80 classes) |
||||
# and determine only the *output* layer names that we need from YOLO |
||||
print("[INFO] loading YOLO from disk...") |
||||
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) |
||||
ln = net.getLayerNames() |
||||
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||
|
||||
|
||||
# initialize the video stream, pointer to output video file, and |
||||
# frame dimensions |
||||
vs = cv2.VideoCapture(args["input"]) |
||||
writer = None |
||||
(W, H) = (None, None) |
||||
|
||||
# try to determine the total number of frames in the video file |
||||
try: |
||||
prop = ( |
||||
cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT |
||||
) |
||||
total = int(vs.get(prop)) |
||||
print("[INFO] {} total frames in video".format(total)) |
||||
|
||||
# an error occurred while trying to determine the total |
||||
# number of frames in the video file |
||||
except: |
||||
print("[INFO] could not determine # of frames in video") |
||||
print("[INFO] no approx. completion time can be provided") |
||||
total = -1 |
||||
|
||||
|
||||
# loop over frames from the video file stream |
||||
while True: |
||||
# read the next frame from the file |
||||
(grabbed, frame) = vs.read() |
||||
|
||||
# if the frame was not grabbed, then we have reached the end |
||||
# of the stream |
||||
if not grabbed: |
||||
break |
||||
|
||||
# if the frame dimensions are empty, grab them |
||||
if W is None or H is None: |
||||
(H, W) = frame.shape[:2] |
||||
|
||||
# construct a blob from the input frame and then perform a forward |
||||
# pass of the YOLO object detector, giving us our bounding boxes |
||||
# and associated probabilities |
||||
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) |
||||
net.setInput(blob) |
||||
start = time.time() |
||||
layerOutputs = net.forward(ln) |
||||
end = time.time() |
||||
|
||||
# initialize our lists of detected bounding boxes, confidences, |
||||
# and class IDs, respectively |
||||
boxes = [] |
||||
confidences = [] |
||||
classIDs = [] |
||||
|
||||
# loop over each of the layer outputs |
||||
for output in layerOutputs: |
||||
# loop over each of the detections |
||||
for detection in output: |
||||
# extract the class ID and confidence (i.e., probability) |
||||
# of the current object detection |
||||
scores = detection[5:] |
||||
classID = np.argmax(scores) |
||||
confidence = scores[classID] |
||||
|
||||
# filter out weak predictions by ensuring the detected |
||||
# probability is greater than the minimum probability |
||||
if confidence > args["confidence"]: |
||||
# scale the bounding box coordinates back relative to |
||||
# the size of the image, keeping in mind that YOLO |
||||
# actually returns the center (x, y)-coordinates of |
||||
# the bounding box followed by the boxes' width and |
||||
# height |
||||
box = detection[0:4] * np.array([W, H, W, H]) |
||||
(centerX, centerY, width, height) = box.astype("int") |
||||
|
||||
# use the center (x, y)-coordinates to derive the top |
||||
# and and left corner of the bounding box |
||||
x = int(centerX - (width / 2)) |
||||
y = int(centerY - (height / 2)) |
||||
|
||||
# update our list of bounding box coordinates, |
||||
# confidences, and class IDs |
||||
boxes.append([x, y, int(width), int(height)]) |
||||
confidences.append(float(confidence)) |
||||
classIDs.append(classID) |
||||
|
||||
outs = net.forward(get_output_layers(net)) |
||||
# apply non-maxima suppression to suppress weak, overlapping |
||||
# bounding boxes |
||||
idxs = cv2.dnn.NMSBoxes( |
||||
boxes, confidences, args["confidence"], args["threshold"] |
||||
) |
||||
|
||||
class_ids = [] |
||||
confidences = [] |
||||
boxes = [] |
||||
conf_threshold = 0.5 |
||||
nms_threshold = 0.4 |
||||
# ensure at least one detection exists |
||||
if len(idxs) > 0: |
||||
# loop over the indexes we are keeping |
||||
for i in idxs.flatten(): |
||||
# extract the bounding box coordinates |
||||
(x, y) = (boxes[i][0], boxes[i][1]) |
||||
(w, h) = (boxes[i][2], boxes[i][3]) |
||||
|
||||
# draw a bounding box rectangle and label on the frame |
||||
color = [int(c) for c in COLORS[classIDs[i]]] |
||||
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) |
||||
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) |
||||
cv2.putText( |
||||
frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2 |
||||
) |
||||
|
||||
if args["live"]: |
||||
cv2.imshow("Frame", frame) |
||||
key = cv2.waitKey(1) & 0xFF |
||||
|
||||
# if the `q` key was pressed, break from the loop |
||||
if key == ord("q"): |
||||
break |
||||
|
||||
if args["output"]: |
||||
# check if the video writer is None |
||||
if writer is None: |
||||
# initialize our video writer |
||||
fourcc = cv2.VideoWriter_fourcc(*"MJPG") |
||||
writer = cv2.VideoWriter( |
||||
args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True |
||||
) |
||||
|
||||
for out in outs: |
||||
for detection in out: |
||||
scores = detection[5:] |
||||
class_id = np.argmax(scores) |
||||
confidence = scores[class_id] |
||||
if confidence > 0.5: |
||||
center_x = int(detection[0] * Width) |
||||
center_y = int(detection[1] * Height) |
||||
w = int(detection[2] * Width) |
||||
h = int(detection[3] * Height) |
||||
x = center_x - w / 2 |
||||
y = center_y - h / 2 |
||||
class_ids.append(class_id) |
||||
confidences.append(float(confidence)) |
||||
boxes.append([x, y, w, h]) |
||||
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
||||
|
||||
for i in indices: |
||||
i = i[0] |
||||
box = boxes[i] |
||||
x = box[0] |
||||
y = box[1] |
||||
w = box[2] |
||||
h = box[3] |
||||
draw_prediction( |
||||
image, |
||||
class_ids[i], |
||||
confidences[i], |
||||
round(x), |
||||
round(y), |
||||
round(x + w), |
||||
round(y + h), |
||||
# some information on processing single frame |
||||
if total > 0: |
||||
elap = end - start |
||||
print("[INFO] single frame took {:.4f} seconds".format(elap)) |
||||
print( |
||||
"[INFO] estimated total time to finish: {:.4f}".format(elap * total) |
||||
) |
||||
|
||||
cv2.imshow("object detection", image) |
||||
cv2.waitKey() |
||||
# write the output frame to disk |
||||
writer.write(frame) |
||||
|
||||
cv2.imwrite("object-detection.jpg", image) |
||||
cv2.destroyAllWindows() |
||||
# release the file pointers |
||||
print("[INFO] cleaning up...") |
||||
writer.release() |
||||
vs.release() |
||||
|
Loading…
Reference in new issue