sipp11
5 years ago
2 changed files with 167 additions and 5 deletions
@ -1,9 +1,9 @@ |
|||||||
"""USAGE |
"""USAGE |
||||||
python examples/yolo_obj_detector.py \ |
python examples/yolo_img_obj_detector.py \ |
||||||
-c ~/dev/obj-tracking/yolov3.cfg \ |
-c ~/syncthing/dropbox/handai/obj_tracking/mytrain.cfg \ |
||||||
-w ~/dev/obj-tracking/yolov3.weights \ |
-w ~/syncthing/dropbox/handai/obj_tracking/mytrain_final.weights \ |
||||||
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
-cl ~/syncthing/dropbox/handai/obj_tracking/mytrain.names \ |
||||||
-i ~/dev/obj-tracking/person.jpg |
-i ~/syncthing/dropbox/handai/obj_tracking/person.jpg |
||||||
""" |
""" |
||||||
import cv2 |
import cv2 |
||||||
import argparse |
import argparse |
@ -0,0 +1,162 @@ |
|||||||
|
"""USAGE |
||||||
|
python yolo_vdo_obj_detector.py \ |
||||||
|
-c ~/syncthing/dropbox/handai/obj_tracking/mytrain.cfg \ |
||||||
|
-w ~/syncthing/dropbox/handai/obj_tracking/mytrain_final.weights \ |
||||||
|
-cl ~/syncthing/dropbox/handai/obj_tracking/mytrain.names \ |
||||||
|
-i ~/syncthing/dropbox/handai/data/5min.mp4 |
||||||
|
""" |
||||||
|
from imutils.video import FPS |
||||||
|
import cv2 |
||||||
|
import csv |
||||||
|
import argparse |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
ap = argparse.ArgumentParser() |
||||||
|
ap.add_argument("-i", "--input", required=True, help="path to input vdo") |
||||||
|
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
||||||
|
ap.add_argument( |
||||||
|
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
||||||
|
) |
||||||
|
ap.add_argument( |
||||||
|
"-cl", "--classes", required=True, help="path to text file containing class names" |
||||||
|
) |
||||||
|
args = ap.parse_args() |
||||||
|
|
||||||
|
|
||||||
|
def get_output_layers(net): |
||||||
|
layer_names = net.getLayerNames() |
||||||
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||||
|
return output_layers |
||||||
|
|
||||||
|
|
||||||
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
||||||
|
label = str(classes[class_id]) |
||||||
|
color = COLORS[class_id] |
||||||
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
||||||
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
||||||
|
|
||||||
|
|
||||||
|
classes = None |
||||||
|
|
||||||
|
with open(args.classes, "r") as f: |
||||||
|
classes = [line.strip() for line in f.readlines()] |
||||||
|
|
||||||
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
||||||
|
|
||||||
|
net = cv2.dnn.readNet(args.weights, args.config) |
||||||
|
|
||||||
|
vs = cv2.VideoCapture(args.input) |
||||||
|
_fps = vs.get(cv2.CAP_PROP_FPS) |
||||||
|
Width = vs.get(cv2.CAP_PROP_FRAME_WIDTH) |
||||||
|
Height = vs.get(cv2.CAP_PROP_FRAME_HEIGHT) |
||||||
|
# Width = Height = None |
||||||
|
scale = 0.00392 |
||||||
|
print(f'{_fps} fps {Width}x{Height} px') |
||||||
|
|
||||||
|
writer = None |
||||||
|
|
||||||
|
|
||||||
|
# initialize the list of object trackers and corresponding class |
||||||
|
# labels |
||||||
|
# trackers = [] |
||||||
|
labels = [] |
||||||
|
# start the frames per second throughput estimator |
||||||
|
fps = FPS().start() |
||||||
|
frame_count = 0 |
||||||
|
|
||||||
|
f = open('yolo_output_txt.csv', 'wt') |
||||||
|
fieldnames = ['frame', 'what', 'x', 'y', 'w', 'h'] |
||||||
|
cf = csv.DictWriter(f, fieldnames=fieldnames) |
||||||
|
cf.writeheader() |
||||||
|
|
||||||
|
# loop over frames from the video file stream |
||||||
|
while True: |
||||||
|
# grab the next frame from the video file |
||||||
|
(grabbed, frame) = vs.read() |
||||||
|
frame_count += 1 |
||||||
|
_duration = frame_count / _fps |
||||||
|
|
||||||
|
# check to see if we have reached the end of the video file |
||||||
|
if frame is None: |
||||||
|
break |
||||||
|
|
||||||
|
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False) |
||||||
|
|
||||||
|
net.setInput(blob) |
||||||
|
|
||||||
|
outs = net.forward(get_output_layers(net)) |
||||||
|
|
||||||
|
class_ids = [] |
||||||
|
confidences = [] |
||||||
|
boxes = [] |
||||||
|
conf_threshold = 0.5 |
||||||
|
nms_threshold = 0.4 |
||||||
|
|
||||||
|
for out in outs: |
||||||
|
for detection in out: |
||||||
|
scores = detection[5:] |
||||||
|
class_id = np.argmax(scores) |
||||||
|
confidence = scores[class_id] |
||||||
|
if confidence > 0.5: |
||||||
|
center_x = int(detection[0] * Width) |
||||||
|
center_y = int(detection[1] * Height) |
||||||
|
w = int(detection[2] * Width) |
||||||
|
h = int(detection[3] * Height) |
||||||
|
x = center_x - w / 2 |
||||||
|
y = center_y - h / 2 |
||||||
|
class_ids.append(class_id) |
||||||
|
confidences.append(float(confidence)) |
||||||
|
boxes.append([x, y, w, h]) |
||||||
|
|
||||||
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
||||||
|
|
||||||
|
for i in indices: |
||||||
|
i = i[0] |
||||||
|
box = boxes[i] |
||||||
|
x = round(box[0]) |
||||||
|
y = round(box[1]) |
||||||
|
w = round(box[2]) |
||||||
|
h = round(box[3]) |
||||||
|
_cls_id = class_ids[i] |
||||||
|
_row = { |
||||||
|
'frame': frame_count, |
||||||
|
'what': str(classes[_cls_id]), |
||||||
|
'x': x, |
||||||
|
'y': y, |
||||||
|
'w': w, |
||||||
|
'h': h, |
||||||
|
} |
||||||
|
cf.writerow(_row) |
||||||
|
draw_prediction( |
||||||
|
frame, |
||||||
|
_cls_id, |
||||||
|
confidences[i], |
||||||
|
round(x), |
||||||
|
round(y), |
||||||
|
round(x + w), |
||||||
|
round(y + h), |
||||||
|
) |
||||||
|
|
||||||
|
# show the output frame |
||||||
|
cv2.imshow("Frame", frame) |
||||||
|
key = cv2.waitKey(1) & 0xFF |
||||||
|
|
||||||
|
# if the `q` key was pressed, break from the loop |
||||||
|
if key == ord("q"): |
||||||
|
break |
||||||
|
|
||||||
|
# update the FPS counter |
||||||
|
# fps.update() |
||||||
|
|
||||||
|
|
||||||
|
# stop the timer and display FPS information |
||||||
|
fps.stop() |
||||||
|
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) |
||||||
|
print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) |
||||||
|
|
||||||
|
|
||||||
|
# do a bit of cleanup |
||||||
|
cv2.destroyAllWindows() |
||||||
|
vs.release() |
||||||
|
|
||||||
|
f.close() |
Loading…
Reference in new issue