sipp11
5 years ago
2 changed files with 167 additions and 5 deletions
@ -1,9 +1,9 @@
|
||||
"""USAGE |
||||
python examples/yolo_obj_detector.py \ |
||||
-c ~/dev/obj-tracking/yolov3.cfg \ |
||||
-w ~/dev/obj-tracking/yolov3.weights \ |
||||
-cl ~/dev/obj-tracking/yolo/darknet/data/coco.names \ |
||||
-i ~/dev/obj-tracking/person.jpg |
||||
python examples/yolo_img_obj_detector.py \ |
||||
-c ~/syncthing/dropbox/handai/obj_tracking/mytrain.cfg \ |
||||
-w ~/syncthing/dropbox/handai/obj_tracking/mytrain_final.weights \ |
||||
-cl ~/syncthing/dropbox/handai/obj_tracking/mytrain.names \ |
||||
-i ~/syncthing/dropbox/handai/obj_tracking/person.jpg |
||||
""" |
||||
import cv2 |
||||
import argparse |
@ -0,0 +1,162 @@
|
||||
"""USAGE |
||||
python yolo_vdo_obj_detector.py \ |
||||
-c ~/syncthing/dropbox/handai/obj_tracking/mytrain.cfg \ |
||||
-w ~/syncthing/dropbox/handai/obj_tracking/mytrain_final.weights \ |
||||
-cl ~/syncthing/dropbox/handai/obj_tracking/mytrain.names \ |
||||
-i ~/syncthing/dropbox/handai/data/5min.mp4 |
||||
""" |
||||
from imutils.video import FPS |
||||
import cv2 |
||||
import csv |
||||
import argparse |
||||
import numpy as np |
||||
|
||||
ap = argparse.ArgumentParser() |
||||
ap.add_argument("-i", "--input", required=True, help="path to input vdo") |
||||
ap.add_argument("-c", "--config", required=True, help="path to yolo config file") |
||||
ap.add_argument( |
||||
"-w", "--weights", required=True, help="path to yolo pre-trained weights" |
||||
) |
||||
ap.add_argument( |
||||
"-cl", "--classes", required=True, help="path to text file containing class names" |
||||
) |
||||
args = ap.parse_args() |
||||
|
||||
|
||||
def get_output_layers(net): |
||||
layer_names = net.getLayerNames() |
||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
||||
return output_layers |
||||
|
||||
|
||||
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
||||
label = str(classes[class_id]) |
||||
color = COLORS[class_id] |
||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
||||
|
||||
|
||||
classes = None |
||||
|
||||
with open(args.classes, "r") as f: |
||||
classes = [line.strip() for line in f.readlines()] |
||||
|
||||
COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) |
||||
|
||||
net = cv2.dnn.readNet(args.weights, args.config) |
||||
|
||||
vs = cv2.VideoCapture(args.input) |
||||
_fps = vs.get(cv2.CAP_PROP_FPS) |
||||
Width = vs.get(cv2.CAP_PROP_FRAME_WIDTH) |
||||
Height = vs.get(cv2.CAP_PROP_FRAME_HEIGHT) |
||||
# Width = Height = None |
||||
scale = 0.00392 |
||||
print(f'{_fps} fps {Width}x{Height} px') |
||||
|
||||
writer = None |
||||
|
||||
|
||||
# initialize the list of object trackers and corresponding class |
||||
# labels |
||||
# trackers = [] |
||||
labels = [] |
||||
# start the frames per second throughput estimator |
||||
fps = FPS().start() |
||||
frame_count = 0 |
||||
|
||||
f = open('yolo_output_txt.csv', 'wt') |
||||
fieldnames = ['frame', 'what', 'x', 'y', 'w', 'h'] |
||||
cf = csv.DictWriter(f, fieldnames=fieldnames) |
||||
cf.writeheader() |
||||
|
||||
# loop over frames from the video file stream |
||||
while True: |
||||
# grab the next frame from the video file |
||||
(grabbed, frame) = vs.read() |
||||
frame_count += 1 |
||||
_duration = frame_count / _fps |
||||
|
||||
# check to see if we have reached the end of the video file |
||||
if frame is None: |
||||
break |
||||
|
||||
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False) |
||||
|
||||
net.setInput(blob) |
||||
|
||||
outs = net.forward(get_output_layers(net)) |
||||
|
||||
class_ids = [] |
||||
confidences = [] |
||||
boxes = [] |
||||
conf_threshold = 0.5 |
||||
nms_threshold = 0.4 |
||||
|
||||
for out in outs: |
||||
for detection in out: |
||||
scores = detection[5:] |
||||
class_id = np.argmax(scores) |
||||
confidence = scores[class_id] |
||||
if confidence > 0.5: |
||||
center_x = int(detection[0] * Width) |
||||
center_y = int(detection[1] * Height) |
||||
w = int(detection[2] * Width) |
||||
h = int(detection[3] * Height) |
||||
x = center_x - w / 2 |
||||
y = center_y - h / 2 |
||||
class_ids.append(class_id) |
||||
confidences.append(float(confidence)) |
||||
boxes.append([x, y, w, h]) |
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) |
||||
|
||||
for i in indices: |
||||
i = i[0] |
||||
box = boxes[i] |
||||
x = round(box[0]) |
||||
y = round(box[1]) |
||||
w = round(box[2]) |
||||
h = round(box[3]) |
||||
_cls_id = class_ids[i] |
||||
_row = { |
||||
'frame': frame_count, |
||||
'what': str(classes[_cls_id]), |
||||
'x': x, |
||||
'y': y, |
||||
'w': w, |
||||
'h': h, |
||||
} |
||||
cf.writerow(_row) |
||||
draw_prediction( |
||||
frame, |
||||
_cls_id, |
||||
confidences[i], |
||||
round(x), |
||||
round(y), |
||||
round(x + w), |
||||
round(y + h), |
||||
) |
||||
|
||||
# show the output frame |
||||
cv2.imshow("Frame", frame) |
||||
key = cv2.waitKey(1) & 0xFF |
||||
|
||||
# if the `q` key was pressed, break from the loop |
||||
if key == ord("q"): |
||||
break |
||||
|
||||
# update the FPS counter |
||||
# fps.update() |
||||
|
||||
|
||||
# stop the timer and display FPS information |
||||
fps.stop() |
||||
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) |
||||
print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) |
||||
|
||||
|
||||
# do a bit of cleanup |
||||
cv2.destroyAllWindows() |
||||
vs.release() |
||||
|
||||
f.close() |
Loading…
Reference in new issue